

# 2022 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

Date: June, 2022

| Information             | Ipswich Borough Council                                         |
|-------------------------|-----------------------------------------------------------------|
| Local Authority Officer | Andrew Coleman                                                  |
| Department              | Environmental Protection                                        |
| Address                 | Grafton House, 15-17 Russell Road,<br>Ipswich, Suffolk, IP1 2DE |
| Telephone               | 01473 433115                                                    |
| E-mail                  | environmental.health@ipswich.gov.uk                             |
| Report Reference Number | AC/ASR/22                                                       |
| Date                    | June 2022                                                       |

# **Executive Summary: Air Quality in Our Area**

# Air Quality in Ipswich Borough

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children, the elderly, and those with existing heart and lung conditions. There is also often a strong correlation with equalities issues because areas with poor air quality are also often less affluent areas<sup>1,2</sup>.

The mortality burden of air pollution within the UK is equivalent to 28,000 to 36,000 deaths at typical ages<sup>3</sup>, with a total estimated healthcare cost to the NHS and social care of £157 million in 2017<sup>4</sup>.

In order to comply with its duty to review the air quality within its area, Ipswich Borough Council (IBC) monitors nitrogen dioxide (NO<sub>2</sub>) levels within the town using two automatic monitors located on St Matthews Street and Chevallier Street and a total of 101 diffusion tubes positioned at 90 carefully selected locations across the borough. Changed and analysed on a monthly basis, the data from the diffusion tubes provides a measure of how nitrogen dioxide levels vary over time and is used to calculate an annual mean concentration at each monitoring location. Once corrected for experimental bias and adjusted to take into account the location of the tubes relative to any likely human exposure, these annual values should not exceed the national air quality objective level of 40µg/m3. In the event that this level is, or is likely, to be exceeded on a consistent basis Local Authorities have a legal duty to declare an Air Quality Management Area (AQMA) encompassing the relevant locations. Both nationally and locally the main source of high levels of nitrogen dioxide is road transport.

<sup>&</sup>lt;sup>1</sup> Public Health England. Air Quality: A Briefing for Directors of Public Health, 2017

<sup>&</sup>lt;sup>2</sup> Defra. Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

<sup>&</sup>lt;sup>3</sup> Defra. Air quality appraisal: damage cost guidance, July 2021

<sup>&</sup>lt;sup>4</sup> Public Health England. Estimation of costs to the NHS and social care due to the health impacts of air pollution: summary report, May 2018

Currently, Ipswich Borough Council has a total of four AQMAs, all due to continued exceedance of the annual mean NO<sub>2</sub> objective level:

- *Ipswich AQMA No.1* Encompassing the land in and around the junction of Norwich Road, Chevallier Street and Valley Road, this area extends along Chevallier Street to the junction with Providence Lane. (declared 2006; amended in 2017 and 2021);
- Ipswich AQMA No. 2 From the junction with Peel Street, extending along Crown Street, St Margarets Street and St Helens Street to the junction with Palmerston Road, and from St Margarets Street extending up Woodbridge Road to just beyond the junction with Argyle Street. (declared 2006; amended 2017);
- Ipswich AQMA No. 3 Encompassing the land in and around College Street, Key Street, Salthouse Street, Fore Street, Star Lane, Neptune Square and Grimwade Street. (declared 2006; amended in 2017 and 2021);
- Ipswich AQMA No. 5 Incorporating the land in or around St. Matthews Street / Norwich Road between the Civic Drive roundabout and Bramford Road (declared 2017).

Further information on the above AQMAs (including maps showing their location and boundaries) is available on <u>Ipswich Borough Council's AQMA webpage</u> on the <u>DEFRA</u> website.

Following the amendment of AQMA Nos. 1 to 3 and the revocation of AQMA No. 4 (Incorporating the Bramford Road / Yarmouth Road / Chevallier Street junction and part of Chevallier Street (declared 2010)) in August 2021, Ipswich Borough Council worked closely with the local Highway Authority, Suffolk County Council and other stakeholders, including Public Health, to update the 2019 - 2024 Air Quality Action Plan (AQAP). The updated AQAP was published in October 2021.

Ipswich Borough Council is a member of the Suffolk Air Quality Management Group which includes all of the Suffolk Local Authorities.

When comparing the 2021 results to the 2020 results generated using the locally derived bias adjustment factor, in 2020 there were no exceedances and in 2021 there were three recorded exceedances (one exceedance within AQMA 2 and two exceedances within

AQMA 5). In 2021, six sites recorded concentrations within 10% below the annual mean NO<sub>2</sub> objective level.

Figures A.1 – A.6 shows bias corrected trendline plots for clusters of passive monitoring locations in and around each of the 4 AQMAs. Despite AQMA 4 being revoked in August 2021, it is included for transparency. All would appear to indicate that annual mean NO<sub>2</sub> levels remained essentially unchanged between 2013 - 2019, with a marginal downward trajectory when looking at the results analysed via the local bias correction factor. However, during this period average daily traffic flows across Ipswich increased by approximately 3%, indicating some air quality improvements have occurred despite higher traffic volumes.

When looking at the bias and distance corrected data for 2020, annual mean NO<sub>2</sub> concentrations dropped considerably compared to previous years. The outbreak of COVID-19 and the Government imposed lockdowns undoubtedly had an impact on air quality in 2020. Emissions reduced significantly, with diffusion tube sites experiencing an average reduction in NO<sub>2</sub> concentrations of approximately 23% in 2020 compared to 2019. This equated to a reduction of around  $7\mu g/m^3$  experienced at each diffusion tube site. No exceedances of the annual NO<sub>2</sub> concentration were noted in any of the AQMA's following both local bias adjustment and distance correction in 2020.

An increase in the annual mean NO<sub>2</sub> concentration can be seen in 2021 compared to 2020, but concentrations remained below 2019 levels. It is likely that the increase in concentrations in 2021 compared to 2020 was linked to the relaxation of Government travel restrictions associated with the COVID-19 pandemic.

At this time of writing this year's ASR submission it is still too early to assess whether traffic levels will fully return to pre-pandemic levels. Currently, it is known that a number of large organisations within Ipswich are still allowing employees to fully work at home or as part of a 'hybrid' working model. Further changes to emissions will be reported on in subsequent ASR's.

# Actions to Improve Air Quality

Whilst air quality has improved significantly in recent decades, and will continue to improve due to national policy decisions, there are some areas where local action is needed to improve air quality further. The 2019 Clean Air Strategy<sup>5</sup> sets out the case for action, with goals to reduce exposure to harmful pollutants. The Road to Zero<sup>6</sup> sets out the approach to reduce exhaust emissions from road transport through a number of mechanisms; this is extremely important given that the majority of Air Quality Management Areas (AQMAs) are designated due to elevated concentrations heavily influenced by transport emissions.

#### Commitment to an Air Quality Improvement Budget

The Council are committed to improving air quality within the Borough. In light of this, the Council have committed £100k of funding, each year, for the next two years (plus £100k in the 2021-2022 previous financial year) to air quality improvement projects. Officers have proposed ideas on how the funding may be directed and are seeking support and guidance from both senior management and Councillors on their views and priorities for expenditure.

# Delivery of Defra grant funded monitoring and behavioural change campaign focused on domestic burning.

The Council has been awarded £115,632 from Defra in March 2022 as part of its Air Quality Grant Programme. The two-year project is focused on a monitoring and behavioural change campaign around domestic burning. At the time of writing this report, monitor and sensor locations have been selected for the project and initial draft behaviour change materials are being prepared. The Council are committed to delivering this project to help better inform the public on the harmful impact of domestic burning and to reduce concentrations of particulate matter.

<sup>&</sup>lt;sup>5</sup> Defra. Clean Air Strategy, 2019

<sup>&</sup>lt;sup>6</sup> DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018



# Publication of the Ipswich Borough Council Low Emissions Supplementary Planning Document (SPD) and the Local Plan

In November 2021, the Councils <u>Low Emissions SPD</u> was adopted. This guidance includes guidance on appropriate maximum levels of car parking for the IP-ONE area. Given the availability of alternative transport options, car-free development may be acceptable in the IP-ONE area.

In addition to the above, the Councils <u>Local Plan</u> was adopted in March 2022 which includes a policy on Air Quality.

All new developments are required to adhere to the requirements set out in these documents, which in turn, should help to ensure air quality is maintained and improved in the town.



#### **Continued commitment to procuring Zero Emission Fleet**

At the time of writing this report, the Council have 20 electric cars and 26 small electric vans within the fleet, replacing a proportion of the older diesel vehicles. One more Euroclass VI van and 6 new Euroclass VI pickups are due to arrive by September 2022. In addition, the larger vehicle fleet now includes 10 pickups, 16 tippers, 18 refuse collection vehicles, 1 glass collection vehicle, 1 road sweeper, and 1 tail lift vehicle, all of which are Euroclass VI standard. The 3-year replacement plan for small vehicle fleet to zero emission is to be concluded in 2022. However, the Council are committed to reducing emissions within the fleet and the renewal programme has been extended. Half a million pounds has been set aside for fleet renewal each year for the next two years.

# Delivery of Public Health Suffolk Air Quality Summit and publication of an Air Quality Profile for Suffolk

During the latter part of 2019 and in 2020, the Council, together with all the other Local Authorities across Suffolk worked with Suffolk County Council's Transport and Public Health colleagues to prepare an '<u>Air Quality Profile</u>' report for Suffolk. The report maps, at a district and borough level, local air pollution levels and explores evidence-based interventions that can be undertaken by local authorities, businesses, communities and individuals to improve air quality. Unfortunately, due to the COVID-19 pandemic and the

associated impact on resource, the report was not finalised in 2020. The report has since been published in June 2021 following sign-off from the Suffolk Director of Public Health and discussed at the Suffolk Health and Wellbeing Board.

Following on from the publication of the Suffolk Air Quality Profile, an officer from the Council, together with other stakeholders, presented the findings at an Air Quality Summit held in January 2022. The summit was attended by elected members and senior Council Officers from Local Authorities across Suffolk. Officers also discussed matters pertaining to air quality in general. It is hoped that the summit will trigger further action to reduce air pollution. The summit findings have led to a mapping exercise to be undertaken in Suffolk County Council, to understand the available levels which could impact on air quality – these will be used to inform development of an action plan. Further, community work is planned at the end of the Summer 2022 focused on Ipswich.

# **Conclusions and Priorities**

For the fourth year running the Council opted to analyse this year's data using the locally derived bias adjustment factor. Once bias adjusted using the local factor and distance corrected, the nitrogen dioxide diffusion tube data for 2021 shows that the national air quality objective for mean annual NO<sub>2</sub> concentrations were exceeded at three of Ipswich Borough Councils monitoring locations. These sites were located within AQMAs 2 and 5. No exceedances were noted in AQMA 1 and 3 following bias adjustment and distance correction.

The Council has several key challenges/priorities for addressing air quality over the forthcoming reporting year. These include:

- The spending of the allocated air quality budget of £100k, per year, for the next two years. Officers have proposed ideas on how the funding may be directed but are seeking support and guidance from both senior management and Councillors on their views and priorities for expenditure.
- The continued delivery of the Councils 2020-2030 Climate Change Strategy and Action Plan. There are a number of actions within the strategy that will benefit air quality and will be priorities for the foreseeable future.
- The continued growth in housing development and business activity will be a major challenge when addressing air quality in the Borough. Ensuring all developments have suitable measures in place to mitigate against their impacts will be essential in

ensuring air quality is maintained and improved in Ipswich; the Low Emissions SPD (adopted in November 2021) should assist with this.

 The Council was awarded £115,632 from Defra in March 2022 as part of its Air Quality Grant Programme. The two-year project is focused on a monitoring and behavioural change campaign around domestic burning. Delivering this project will be a key priority for the Council over the next two reporting periods.

The Council will continue to monitor air quality across Ipswich as this is essential for informing our air quality work and developing measures that can provide potential improvements.

# Local Engagement and How to get Involved

The main source of air pollution in Ipswich is road traffic. We are working to meet the challenge set by the Government for  $NO_2$ ,  $PM_{10}$  and  $PM_{2.5}$  targets but it will also require a concerted public effort with each person doing their bit in order to try and increase active travel and reduce the use of the motor vehicle where possible. Below are a few suggestions on how to get involved:

- Try to use your car less. Walking and cycling are much cleaner, cheaper and healthier forms of travel. A map showing cycle routes across Ipswich is available on the <u>Way</u> to go Suffolk Website.
- Use public transport, such as the bus and train.
- If you have to use your car, you can reduce emissions by not idling when parked. You can also reduce emissions from your car by ensuring it is regularly serviced and by driving efficiently.
- Consider purchasing an electric vehicle. The Council is working to improve the local charging infrastructure across Ipswich. Electric vehicles are reducing in cost and technology is improving to make this technology more viable. If you opt to purchase a traditionally fuelled vehicle, consider the most fuel efficient petrol vehicle rather than buying a diesel vehicle. See the <u>Zap Map website</u> for locations of charging points.
- Consider car sharing to reduce emissions and save money. See the <u>Suffolk Car</u> <u>Share website</u> for details.

- Avoid having bonfires. If you do choose to have a fire, only burn dry garden waste and avoid burning on days that already have high pollution levels.
- Avoid burning solid fuel. If you do choose to burn solid fuel, always ensure the appliance is well maintained and fuel is clean and dry

More information on air quality within Ipswich is available on the Ipswich Borough

#### Council Air Quality Management website.

If you have any specific questions or concerns, or if you would like to make suggestions on possible improvements and/or supply additional air quality information, please contact Environmental Health at Ipswich Borough Council on 01473 433115 or <u>environmental.health@ipswich.gov.uk</u>.

If you would like any further information on national air quality, including the latest news, air pollution forecasts, the latest measured levels and a summary, interactive monitoring, and general information about air pollution, consult the <u>Defra website</u>.

# **Local Responsibilities and Commitment**

This ASR was prepared by the Environmental Health Department of Ipswich Borough Council with the support and agreement of the following departments:

### Public Protection, Ipswich Borough Council

- Principal Environmental Health Officer (Environmental Protection)
- Environmental Health Officer (Environmental Protection)

#### Planning and Development, Ipswich Borough Council

- Operations Manager Planning and Development
- Planning Policy Team Leader

### Culture and Environment, Ipswich Borough Council

• Climate Change Project Manager

### Growth, Highways and Infrastructure, Suffolk County Council

- Transport Policy & Development Manager
- Senior Principal Transport Planner
- Behaviour Change Manager

### Public Health and Communities, Suffolk County Council

• Health Protection Manager

This ASR has been approved by the: Director for Housing & Community Services (Ipswich Borough Council)

This ASR has been signed off by a Director of Public Health.

If you have any comments on this ASR please send them to Environmental Health at:

Ipswich Borough Council, Grafton House, Ipswich, Suffolk, IP1 2DE

Telephone: 01473 433115

Email: environmental.health@ipswich.gov.uk

# **Table of Contents**

| Executive Summary: Air Quality in Our Area                                                    | .i      |
|-----------------------------------------------------------------------------------------------|---------|
| Air Quality in Ipswich Borough                                                                | . i     |
| Actions to Improve Air Quality                                                                | iii     |
| Conclusions and Priorities                                                                    | /ii     |
| Local Engagement and How to get Involvedv                                                     | 'iii    |
| Local Responsibilities and Commitment                                                         | ix      |
| 1 Local Air Quality Management                                                                | 1       |
| 2 Actions to Improve Air Quality                                                              | 2       |
| 2.1 Air Quality Management Areas                                                              | 2       |
| 2.2 Progress and Impact of Measures to address Air Quality in Ipswich Borough                 | 5       |
| 2.3 PM <sub>2.5</sub> – Local Authority Approach to Reducing Emissions and/or Concentrations2 | 22      |
| 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and                  |         |
| National Compliance2                                                                          | :5      |
| 3.1 Summary of Monitoring Undertaken2                                                         | 25      |
| 3.1.1 Automatic Monitoring Sites                                                              | 25      |
| 3.1.2 Non-Automatic Monitoring Sites                                                          | 25      |
| 3.2 Individual Pollutants                                                                     | 26      |
| 3.2.1 Nitrogen Dioxide (NO <sub>2</sub> )                                                     | 27      |
| 3.2.2 Particulate Matter (PM <sub>10</sub> )                                                  | 28      |
| 3.2.3 Particulate Matter (PM <sub>2.5</sub> )                                                 | 28      |
| 3.2.4 Sulphur Dioxide (SO <sub>2</sub> )                                                      | 28      |
| Appendix A: Monitoring Results2                                                               | :9      |
| Appendix B: Full Monthly Diffusion Tube Results for 20215                                     | 4       |
| Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC              | ;<br>;0 |
| New or Changed Sources Identified Within Ipswich During 2021                                  | 50      |
| Additional Air Quality Works Undertaken by Ipswich Borough Council During 2021                | 50      |
| QA/QC of Diffusion Tube Monitoring                                                            | 50      |
| Diffusion Tube Annualisation                                                                  | 54      |
| Diffusion Tube Bias Adjustment Factors                                                        | 34      |
| NO <sub>2</sub> Fall-off with Distance from the Road $\epsilon$                               | 6       |
| QA/QC of Automatic Monitoring6                                                                | 6       |
| Automatic Monitoring Annualisation                                                            | 77      |
| NO <sub>2</sub> Fall-off with Distance from the Road                                          | 77      |
| Appendix D: Map(s) of Monitoring Locations and AQMAs8                                         | 0       |
| Appendix E: Summary of Air Quality Objectives in England                                      | 5       |
| Glossary of Terms                                                                             | 6       |

| References |
|------------|
|------------|

# **Figures**

| Figure A.1 – Trends in Annual Mean NO2 Concentrations                                                                                                             | .47        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure A.2 – Trends in Annual Mean NO2 Concentrations in AQMA No.2                                                                                                | .48        |
| Figure A.3 – Trends in Annual Mean NO2 Concentrations in AQMA No.3                                                                                                | .49        |
| Figure A.4 - Trends in Annual Mean NO2 Concentrations in former AQMA No.4. AQMA                                                                                   |            |
| revoked on 19/08/2021                                                                                                                                             | 50         |
| Figure A.5 - Trends in Annual Mean NO2 Concentrations in AQMA No.5                                                                                                | .51        |
| Figure A.6 – Trends in Annual Mean NO2 Concentrations outside of AQMA sites                                                                                       | .52        |
| Figure C.1 – Precision and Accuracy of Collocated Diffusion Tubes                                                                                                 | .61        |
| Figure C.2 – Certificate of Calibration for IPS3                                                                                                                  | .68        |
| Figure C.3 – Certificate of Calibration for IPS04                                                                                                                 | .71        |
| Figure C.4 – 2021 Air Pollution Report – Ipswich Chevallier Street (Site ID: IPS3)                                                                                | .74        |
| Figure C.5 – 2021 Air Pollution Report – Ipswich St Matthews Street (Site ID: IPS04)<br>Figure D.1 – Overview of Ipswich AQMA boundaries and Monitoring Locations | .76<br>.80 |
| Figure D.2 – Ipswich Air Quality Management Area 1                                                                                                                | .81        |
| Figure D.3 – Ipswich Air Quality Management Area 2                                                                                                                | .82        |
| Figure D.4 – Ipswich Air Quality Management Area 3                                                                                                                | .83        |
| Figure D.5 – Ipswich Air Quality Management Area 5                                                                                                                | .84        |

# Tables

| Table 2.1 – Declared Air Quality Management Areas                                                                | 3                |
|------------------------------------------------------------------------------------------------------------------|------------------|
| Table 2.2 – Progress on Measures to Improve Air Quality                                                          | 9                |
| Table A.1 – Details of Automatic Monitoring Sites                                                                | 29               |
| Table A.2 – Details of Non-Automatic Monitoring Sites                                                            | 30               |
| Table A.3 – Annual Mean NO <sub>2</sub> Monitoring Results: Automatic Monitoring ( $\mu$ g/m <sup>3</sup> )      | 38               |
| Table A.4 – Annual Mean NO <sub>2</sub> Monitoring Results: Non-Automatic Monitoring ( $\mu$ g/m <sup>3</sup> ). | 39               |
| Table A.5 – 1-Hour Mean NO <sub>2</sub> Monitoring Results, Number of 1-Hour Means > $200\mu g/$                 | m <sup>3</sup>   |
|                                                                                                                  | 53               |
| Table B.1 – NO₂ 2021 Diffusion Tube Results (μg/m³)                                                              | 54               |
| Table C.1 – Bias Adjustment Factor                                                                               | 66               |
| Table C.2 – Local Bias Adjustment Calculation                                                                    | 78               |
| Table C.3 – NO <sub>2</sub> Fall off With Distance Calculations (concentrations presented in $\mu$ g/m           | <sup>3</sup> )79 |
| Table E.1 – Air Quality Objectives in England                                                                    | 85               |

# 1 Local Air Quality Management

This report provides an overview of air quality in Ipswich Borough during 2021. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Ipswich Borough Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England are presented in Table E.1.

# 2 Actions to Improve Air Quality

# 2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority should prepare an Air Quality Action Plan (AQAP) within 12 months setting out measures it intends to put in place in pursuit of compliance with the objectives.

A summary of AQMAs declared by Ipswich Borough Council can be found in Table 2.1. The table presents a description of the four AQMAs that are currently designated within Ipswich. Appendix D: Map(s) of Monitoring Locations and AQMAs provides maps of AQMAs and also the air quality monitoring locations in relation to the AQMAs. The air quality objectives pertinent to the current AQMA designations are as follows:

• NO<sub>2</sub> annual mean annual mean less than 40µg/m<sup>3</sup>

| AQMA<br>Name            | Date of<br>Declaration                                                   | Pollutants<br>and Air<br>Quality<br>Objectives | One Line Description                                                                                                                                                                                                                                                                          | Is air<br>quality in<br>the AQMA<br>influenced<br>by roads<br>controlled<br>by National<br>Highways? | Level of<br>Exceedance:<br>Declaration | Level of<br>Exceedance:<br>Current Year | Name and Date<br>of AQAP<br>Publication                                               | Web Link to AQAP                                                                                                                            |
|-------------------------|--------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| lpswich<br>AQMA<br>No.1 | Declared<br>11/04/2006<br>Amended<br>12/09/2017<br>Amended<br>19/09/2021 | NO2 Annual<br>Mean                             | Encompassing the land in<br>and around the junction of<br>Norwich Road, Chevallier<br>Street and Valley Road, this<br>area extends along Chevallier<br>Street to the junction with<br>Providence Lane                                                                                         | NO                                                                                                   | 50µg/m³                                | 34µg//m³                                | Ipswich Borough<br>Council Air Quality<br>Action Plan 2019-<br>2024 (updated<br>2021) | https://www.ipswich<br>.gov.uk/sites/www.i<br>pswich.gov.uk/files/<br>air_quality_action_p<br>lan_2019-<br>2024_updated_202<br><u>1.pdf</u> |
| lpswich<br>AQMA<br>No.2 | Declared<br>11/04/2006<br>Amended<br>12/09/2017                          | NO2 Annual<br>Mean                             | An area from the junction with<br>Peel Street, extending along<br>Crown Street, St Margarets<br>Street and St Helens Street<br>to the junction with<br>Palmerston Road, and from<br>St Margarets Street<br>extending up Woodbridge<br>Road to just beyond the<br>junction with Argyle Street. | NO                                                                                                   | 45µg/m3                                | 42µg/m3                                 | Ipswich Borough<br>Council Air Quality<br>Action Plan 2019-<br>2024 (updated<br>2021) | https://www.ipswich<br>.gov.uk/sites/www.i<br>pswich.gov.uk/files/<br>air_quality_action_p<br>lan_2019-<br>2024_updated_202<br>1.pdf        |

### Table 2.1 – Declared Air Quality Management Areas

| AQMA<br>Name            | Date of<br>Declaration                                                   | Pollutants<br>and Air<br>Quality<br>Objectives | One Line Description                                                                                                                                         | Is air<br>quality in<br>the AQMA<br>influenced<br>by roads<br>controlled<br>by National<br>Highways? | Level of<br>Exceedance:<br>Declaration | Level of<br>Exceedance:<br>Current Year | Name and Date<br>of AQAP<br>Publication                                               | Web Link to AQAP                                                                                                                     |
|-------------------------|--------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| lpswich<br>AQMA<br>No.3 | Declared<br>11/04/2006<br>Amended<br>12/09/2017<br>Amended<br>19/08/2021 | NO2 Annual<br>Mean                             | Encompassing the land in<br>and around College Street,<br>Key Street, Salthouse Street,<br>Fore Street, Star Lane,<br>Neptune Square and<br>Grimwade Street. | NO                                                                                                   | 50µg/m3                                | 35µg/m3                                 | Ipswich Borough<br>Council Air Quality<br>Action Plan 2019-<br>2024 (updated<br>2021) | https://www.ipswich<br>.gov.uk/sites/www.i<br>pswich.gov.uk/files/<br>air_quality_action_p<br>lan_2019-<br>2024_updated_202<br>1.pdf |
| lpswich<br>AQMA<br>No.5 | Declared<br>12/09/2017                                                   | NO2 Annual<br>Mean                             | An area incorporating the<br>land in or around St.<br>Matthews Street / Norwich<br>Road between the Civic Drive<br>roundabout and Bramford<br>Road.          | NO                                                                                                   | 49µg/m3                                | 41µg/m3                                 | Ipswich Borough<br>Council Air Quality<br>Action Plan 2019-<br>2024 (updated<br>2021) | https://www.ipswich<br>.gov.uk/sites/www.i<br>pswich.gov.uk/files/<br>air_quality_action_p<br>lan_2019-<br>2024_updated_202<br>1.pdf |

Ipswich Borough Council confirm the information on UK-Air regarding their AQMA(s) is up to date.

☐ Ipswich Borough Council confirm that all current AQAPs have been submitted to Defra.

# 2.2 Progress and Impact of Measures to address Air Quality in Ipswich Borough

Following on from the submission of the 2021 update to the Councils 2019 – 2024 Air Quality Action Plan for appraisal to Defra, it was concluded that:

"Overall, the AQAP appears well considered and is therefore accepted".

Some of the supporting commentary related to updating the source apportionment data and the more accurate quantification of the impacts of specific measures. Typically, source apportionment studies and quantification of emission reductions based on specific measures can be both costly and difficult to accurately predict. The Council is currently exploring the procurement of dispersion modelling to use internally to assist with the more accurate quantification of measures. Further progress on this will be reported in the 2023 ASR.

Defra's appraisal of last year's ASR concluded that:

"On the basis of the evidence provided by the local authority the conclusions reached are acceptable for all sources and pollutants. The next step for Ipswich Borough Council is to submit the next Annual Status Report, which is due to be submitted in 2022."

Defra stated that: "Overall, the report is detailed, concise and satisfies the criteria of relevant standards. The Council should continue their good and thorough work."

Ipswich Borough Council has taken forward a number of direct measures during the current reporting year of 2022 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. Measures are included within Table 2.2, with the type of measure and the progress Ipswich Borough Council have made during the reporting year of 2022 presented. Where there have been, or continue to be, barriers restricting the implementation of the measure, these are also presented within Table 2.2.

More detail on these measures can be found in the Ipswich Borough Council Air Quality Action Plan 2019 – 2024 (updated 2021). Key completed measures are:

 EV charging infrastructure has now been installed at the Council's headquarters to support the delivery of the new fleet. The Council's electric fleet now consists of 20 electric cars and 26 small electric vans. In addition, the larger vehicle fleet now includes ten pickups, sixteen tippers, eighteen refuse collection vehicles, one glass collection vehicle, one road sweeper, and one tail lift vehicle, all of which are Euroclass VI standard.

- EV charging infrastructure continues to be installed at the Council's offices and Council owned car parks. See measure B3 in table 2.2. below for further information on the locations and numbers of charging points installed.
- The <u>Suffolk anti-idling campaign</u> has been launched.
- The Introduction of a Hackney Carriage and Private Hire Licensing Policy 2019 -2022 which sets standards in relation to vehicle age to help reduce the levels of pollutants emitted from the local taxi fleet.
- The Councils <u>Low Emissions SPD</u> was adopted in November 2021 which requires developers to mitigate against air quality impacts arising from development.
- The Councils Local Plan was adopted in March 2022 which includes a policy on Air Quality.
- The Council has success in obtaining grant funding from Defra under the 2021 Air Quality Grant Programme to run a campaign around domestic burning. The Council aspires to continue to bid for future Defra grant funding when opportunities are available.
- Although not a specific measure listed within the AQAP, an <u>Air Quality Profile</u> for Suffolk has been produced. The report maps, at a district and borough level, local air pollution levels and explores evidence-based interventions that can be undertaken by local authorities, businesses, communities and individuals to improve air quality.

Ipswich Borough Council expects the following measures to be completed over the course of the next reporting year:

- The final installation and delivery of air quality messages on IBC procured variable messaging signs.
- The development and implementation of the Ipswich Air Aware Campaign.

Ipswich Borough Council's priorities for the coming year are:

- To continue to work towards implementing the measures in the AQAP.
- To continue to monitor air quality across Ipswich as this is essential for informing our air quality work and developing measures that can provide potential improvements.

- To deliver air quality projects using the £200k of funding allocated by the Council to air quality improvements over the next year.
- To work with officers implementing the Council's Climate Change Strategy to ensure a joined-up approach in tacking both climate change and air quality. There are several actions within the strategy that will benefit air quality and will be priorities for the foreseeable future. At the time of writing this year's ASR submission, a Climate Change Officer working group has recently been created, made up of officers across the Council, and it includes an air quality representative from the Environmental Protection department.
- To continue to assess and comment on planning applications and major developments in relation to air quality. This is essential in order to ensure future emission reductions within the district, and to reduce the likelihood of additional AQMAs being declared and further deterioration of air quality in existing AQMAs.
- To progress the Councils monitoring and behavioural change campaign focused on domestic burning.

The principal challenges and barriers to implementation that Ipswich Borough Council anticipates facing are:

- Limitations on the level of dedicated resource available for air quality management activities; and
- Difficulty in obtaining sufficient support to include potentially more intrusive and/or costly interventions to secure significant and necessary improvements in air quality throughout the AQMAs.
- Officers have previously tried to engage with Primary Schools with the air quality campaign being rolled out across Ipswich, particularly those nearest to our AQMAs. Unfortunately, to date, only one school near to an AQMA has expressed an interest in participating. Officers will continue to attempt to engage with schools, but it is anticipated that uptake will be low.

Progress on the following measures has been slower than expected due to:

 Work with other Bus Operators in the town to encourage the renewal of their fleets -SCC advise that match funding requirements prevented them making bids under the recent "All Electric Bus Town" and "Zero Emission Bus (ZEBRA)" opportunities put forward by the DfT. Conversion to electric or alternative fuels (e.g. Hydrogen) requires significant investment in depot facilities as well as the vehicles themselves being more expensive than diesel buses. Although support funding has been available throughout the pandemic period to help operators continue running with massive reductions in passengers (at one point averaging 20% of pre-covid use) they have not been able to plan ahead for new bus purchases. Suffolk operators are now seeing the same level of patronage return as the national picture. Pandemic support funding will cease in October, but operators are predicting they will still only be up to 90% by then and do not expect to reach 100% and start growth again for another year without help. As such, they still have no spare funding to invest in new vehicles of any kind.

 Supporting, where appropriate, the measures identified in the Ipswich Strategic Planning Area Transport Mitigation Strategy – delays encountered as Local Planning Authorities not yet agreed apportionment of funding towards strategy.

Whilst the measures stated above and in Table 2.2 will help to contribute towards compliance, Ipswich Borough Council anticipates that further additional measures not yet prescribed will be required in subsequent years to achieve compliance and enable the revocation of all current AQMAs.

# Table 2.2 – Progress on Measures to Improve Air Quality

| Measure<br>No. | Measure                                                                                                                                                                                                     | Category                            | Classification                  | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved     | Funding<br>Source             | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                                                                                                                  | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1             | Development<br>and<br>implementation<br>of an anti-idling<br>campaign,<br>including<br>where<br>appropriate an<br>enforcement<br>regime                                                                     | Other                               | Other                           | 2019                          | 2024                                        | Ipswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | No                              | Funded            | < £10k                          | Implementation    | Low                                                        | Development of<br>campaign<br>materials                                                                                                                                          | Campaign materials previously produced by the Suffolk<br>Air Quality Working Group. Implementation on-going.<br>Internal staff within Environmental Health and Waste<br>Operations have been given anti-idling training.                                                                                                                                                                                                                                                                                                | Ongoing campaigns,<br>hence completion date<br>listed for lifetime of<br>current AQAP. Exact<br>costs unknown – will<br>be from officer time<br>and material costs.                                                                                                                                                           |
| A2             | Campaign to<br>raise<br>awareness of<br>air quality<br>issues in<br>schools near<br>AQMAs to<br>subsequently<br>influence<br>behavioural<br>change and<br>improve air<br>quality near<br>schools            | Public<br>Information               | Other                           | 2019                          | 2024                                        | Ipswich<br>Borough<br>Council | No                            | NO                              | Funded            | £10k - 50k                      | Implementation    | Low                                                        | Present<br>information to<br>schools near<br>AQMAs and<br>within the<br>borough.                                                                                                 | IBC have produced an 'Air Aware Ipswich' Schools Toolkit.<br>A 12-week programme aimed at raising awareness of air<br>quality issues with school children. This has been adapted<br>from initiatives used in London and Oxford. This is<br>available at: <u>https://www.ipswich.gov.uk/content/air-<br/>guality-resources-schools</u> . SCC have a School Streets<br>Policy which was approved by Cabinet members last year.<br>The final copy is to be published. Schools are to lead and<br>be the voice of a scheme. | It has been difficult to<br>engage with some<br>schools, possibly due<br>to competing demands<br>they face. One school<br>is considering trialling<br>a school street.<br>Ongoing campaigns,<br>hence completion date<br>listed for lifetime of<br>current AQAP. Costs<br>unknown – will be<br>officer and material<br>costs. |
| A3             | Promote the<br>Councils Green<br>Travel Plan to<br>employees,<br>including use<br>of agile<br>working.<br>Confirm SCC<br>and Mid Suffolk<br>and Babergh<br>DC are<br>promoting their<br>own travel<br>plans | Promoting<br>Travel<br>Alternatives | Workplace<br>Travel<br>Planning | 2019                          | 2024                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | No                              | Funded            | Unknown                         | Implementation    | Low                                                        | Annual<br>promotion of<br>travel plan.<br>Increase in the<br>number of<br>employees<br>walking, cycling<br>or using public<br>transport in the<br>Councils Travel<br>Plan survey | Staff travel plan promoted on the intranet as staff now able to return to the office following COVID-19 pandemic.                                                                                                                                                                                                                                                                                                                                                                                                       | Pre-COVID19<br>pandemic, an average<br>of 248 staff were<br>working from Grafton<br>House per day. In May<br>2021, the average<br>number of employees<br>working from Grafton<br>House per day was 36.<br>In May 2022, an<br>average of 150<br>employees were<br>working from Grafton<br>House per day.                       |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                                                                                                                                                              | Category              | Classification | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved     | Funding<br>Source             | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status   | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                                                                          | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------|---------------------------------|-------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A4             | Active<br>participation in<br>annual Clean<br>Air Days                                                                                                                                                                                                                                                                                                                                                               | Public<br>Information | Other          | 2019                          | 2024                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | No                              | Funded              | Unknown                         | Implementation    | Low                                                        | Participation in<br>annual Clean Air<br>Days                                                                                             | Clean Air Day 2022 is currently being planned at the time<br>of writing this year's ASR. One school has signed up for a<br>workshop and anti-idling event on the day. It is hoped that<br>officers will also work with the local Clinical<br>Commissioning Group and Public Health to raise<br>awareness. Officers also intend to publish information<br>relating to a domestic burning campaign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ongoing commitment,<br>hence completion date<br>listed for lifetime of<br>current AQAP. Costs<br>unknown – will be<br>officer and material<br>costs                                                                                                                                                                                           |
| A5             | Investigate the<br>feasibility of<br>promoting air<br>quality<br>messages on<br>IBC procured<br>variable<br>message signs<br>around Ipswich                                                                                                                                                                                                                                                                          | Public<br>Information | Other          | 2019                          | 2024                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | No                              | Funded              | £100k -<br>£500k                | Completed         | Low                                                        | Promote anti-<br>idling messages<br>quarterly.                                                                                           | VMS project cost £259,000. At the time of writing this year's ASR, all VMS had been installed bar one which was due to be installed shortly. Anti-idling messages to be prepared and agreed with the relevant operational team.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ongoing promotion of<br>messages once<br>installed, hence<br>completion date listed<br>for lifetime of AQAP.                                                                                                                                                                                                                                  |
| A6             | Promotion of<br>travel<br>alternatives<br>e.g. walking,<br>cycling, public<br>transport, car<br>sharing & air<br>quality matters.<br>Measure<br>includes:<br>Development<br>and<br>implementation<br>of the Ipswich<br>Air Aware<br>Campaign.<br>Investigate the<br>feasibility of<br>promoting air<br>quality<br>messages on<br>non IBC owned<br>variable<br>message signs<br>around Ipswich<br>(e.g. Bury<br>Road) | Public<br>Information | Other          | 2019                          | 2024                                        | lpswich<br>Borough<br>Council | Ipswich<br>Borough<br>Council | NO                              | Partially<br>Funded | Unknown                         | Implementation    | Low                                                        | Website<br>patronage,<br>number of<br>Facebook<br>posts/comments,<br>number of video<br>views Air quality<br>messages being<br>displayed | <ul> <li>Ipswich Air Aware Communications campaign drafted.</li> <li>Climate Change Working Group now established but working on other projects initially. Officers will now proceed with campaign based on materials already drafted.</li> <li>SCC advise that DfT are considering a "get back on the bus" campaign but no details yet. SCC are due to receive the final tranche of pandemic support funding this month and the spending rules have been relaxed so they are able to use some of this for promotional work. "Park and Cycle" is available from the Martlesham P&amp;R site and will be extended to Copdock in the next few weeks. SCC are funding Mobilityways (£6,300) to work with Willis (large employer in Ipswich) for one year and they will produce a full carbon audit of the staff commute at Willis along with advice for employees to travel more sustainably. SCC have also trialled electric cargo bikes with the university and there have been discussions with a national cargo bike operator with a view to them setting up a 'last mile delivery' hub in the town.</li> </ul> | Messages can also link<br>to other campaigns:<br>anti-idling/ domestic<br>burning/ clean air day/<br>discounted public<br>transport promotions<br>SCC requirements to<br>use the VMS largely<br>restrict messages that<br>can be displayed. They<br>cannot be too long,<br>refer to secondary<br>sources of information<br>or ask a question. |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                                                                                | Category                                  | Classification                                                                           | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved                                      | Funding<br>Source                                                 | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator     | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B1             | Explore<br>opportunities to<br>increase<br>Ipswich's Park<br>and Ride<br>scheme,<br>including<br>consideration<br>given to re-<br>opening the<br>Bury Road<br>Park and Ride,<br>and promote<br>current<br>schemes to<br>incentivise<br>people coming<br>into Ipswich<br>town centre to<br>use public<br>transport over<br>private cars | Alternatives<br>to private<br>vehicle use | Bus based<br>Park & Ride                                                                 | 2019                          | 2023                                        | Suffolk County<br>Council and<br>Ipswich<br>Borough<br>Council | Suffolk<br>County<br>Council and<br>Ipswich<br>Borough<br>Council | NO                              | Not<br>Funded     | Unknown                         | Planning          | Low                                                        | Increase in Park<br>and Ride uptake | It's understood that SCC intend to apply to the Levelling<br>Up Fund (round 2) for a package of transport schemes to<br>include a P&R site in North West Ipswich. This is likely to<br>be on the land acquired by IBC in the last 2 years behind<br>Anglia Retail Park. There is a master planning exercise for<br>the Whitton area due to commence this summer and<br>report back before Christmas. The report will include a<br>range of items including the proposed P&R to ensure it<br>properly integrates with other development activity in this<br>part of Ipswich. If the Levelling Up bid fails the scheme<br>would need to be picked up as part of the implementation<br>of the masterplan. | SCC indicate that<br>increasing the use of<br>the Park & Ride<br>scheme, along with<br>other bus patronage, is<br>an objective of the<br>Enhanced Bus<br>Partnership (EP) and is<br>identified in the Ipswich<br>Strategic Planning<br>Area (ISPA) mitigation<br>strategy. To ensure the<br>financial viability of the<br>North West Park &<br>Ride services, the<br>existing service would<br>need to increase<br>patronage before<br>additional sites could<br>be viable.<br>Opening the North<br>West P&R site is<br>included within the<br>ISPA strategy. Barriers<br>to the development of<br>this measure include<br>increasing bus<br>patronage, linked to<br>level and cost of<br>parking in the town<br>(particularly company-<br>owned car parks), and<br>also continued home-<br>working for<br>many. SCC have had<br>an initial discussion<br>with Ipswich Central<br>about promoting the<br>services and potential<br>discounts to<br>businesses. |
| В2             | Procurement of<br>low emission<br>vehicles in<br>lpswich<br>Borough<br>Council Fleet                                                                                                                                                                                                                                                   | Promoting<br>Low Emission<br>Transport    | Public Vehicle<br>Procurement -<br>Prioritising<br>uptake of low<br>emission<br>vehicles | 2019                          | 2022                                        | lpswich<br>Borough<br>Council                                  | Ipswich<br>Borough<br>Council                                     | NO                              | Funded            | £1 million -<br>£10 million     | Implementation    | Low                                                        | Provision of new<br>vehicles        | The Council have 52 electric vehicles in total: 20 electric<br>cars, 26 small electric vans, and 6 large electric vans,<br>replacing a proportion of the older diesel vehicles. 1 more<br>Euroclass VI vans and 6 new Euroclass VI pickups are<br>due to arrive by September 2022. In addition, the larger<br>vehicle fleet now includes 10 pickups, 16 tippers, 18<br>refuse collection vehicles, 1 glass collection vehicle, 1<br>road sweeper, and 1 tail lift vehicle, all of which are<br>Euroclass VI standard. It is estimated that there has been<br>a 50% reduction in NOx emissions from the Council's fleet<br>as a result of these vehicle replacements.                                   | 3-year replacement<br>plan for small vehicle<br>fleet to zero emission<br>is to be concluded in<br>2022. However, the<br>Council are committed<br>to reducing emissions<br>within the fleet and the<br>renewal programme<br>has been extended.<br>Half a million pounds<br>has been set aside for<br>fleet renewal each year<br>for the next two years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                                                                                        | Category                               | Classification                                                                                                                                  | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved     | Funding<br>Source             | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status   | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                                                           | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------|---------------------------------|-------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Β3             | Provision of EV<br>charging points<br>across IBC<br>offices, Crown<br>Street and Elm<br>Street public<br>car parks and<br>investigate the<br>feasibility of<br>additional<br>charging points<br>across IBC car<br>parks                                                                                                                        | Promoting<br>Low Emission<br>Transport | Procuring<br>alternative<br>Refuelling<br>infrastructure<br>to promote<br>Low Emission<br>Vehicles, EV<br>recharging,<br>Gas fuel<br>recharging | 2019                          | 2019                                        | lpswich<br>Borough<br>Council | Ipswich<br>Borough<br>Council | No                              | Partially<br>Funded | £500k - £1<br>million           | Completed         | Low                                                        | Provision of 4<br>charging stations<br>(8 points) at<br>Grafton House.<br>Usage of EV<br>charging points<br>by the public | Number of charging points now installed at the following<br>locations: Grafton House – 26 Gipping House – 8<br>Christchurch Mansion – 4 Chantry Park – 2 Holywells<br>Park – 2 Crematorium – 1 Gainsborough sports centre – 2<br>Crown Car Park – 28 Elm St Car Park – 2 rapid chargers<br>Majors Garage – 1 Upper Orwell Street North Car Park -<br>2. 149 points proposed at Portman Road Car Park with<br>capacity for 298 EV charging spaces - approx. cost £500k | Provision of additional<br>charging points<br>depends<br>on success of usage of<br>current charging<br>points.<br>Crown car park –<br>Between<br>June 2021 and April<br>2022 – there has been<br>8718hrs4mins of<br>charging sessions<br>using<br>total of 41,569.22kWh.<br>Upper Orwell North car<br>park – Between June<br>2021 and April 2022<br>there has been<br>1485hrs26mins of<br>charging<br>sessions using total of<br>3755.47kWhr.<br>Elm Street Car Park -<br>Between June 2021<br>and April 2022 - there<br>has been 3678hrs13<br>mins<br>of charging sessions<br>using<br>total of<br>83,998.29kWh.Delivery<br>of new Portman Road<br>Car Park now linked<br>with a review of Sports<br>and Leisure. |
| Β4             | Promote the<br>use of Norwich<br>Road<br>Shoppers Car<br>Park, short<br>term parking<br>bays behind<br>businesses on<br>Norwich Road.<br>Incentivising<br>use of<br>allocated<br>parking and<br>enforcement<br>against<br>unauthorised<br>on street<br>loading/<br>parking to<br>assist with the<br>reduction of<br>congestion in<br>the area. | Traffic<br>Management                  | Other                                                                                                                                           | 2019                          | 2024                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | NO                              | Funded              | Unknown                         | Implementation    | Low                                                        | Reduction in<br>congestion along<br>Norwich Road/St<br>Matthews Street.<br>Number of<br>penalty notices<br>served         | Between 01/06/2021 - 16/05/2022 the following number of<br>PCNs were served along Norwich Road and St Matthews<br>Street: 86 for parking on yellow lines / 48 for parking<br>where a loading restriction is present /1 for parking in a<br>bus stop or stand/ 2 for parking on a pedestrian crossing.<br>20 PCN's were issued in Norwich Road Shoppers Car<br>Park for overstaying in the free parking bays.                                                          | Implementation costs<br>not known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                                                  | Category                               | Classification                                                                           | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved                             | Funding<br>Source                                                   | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status   | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comments / Barriers<br>to Implementation                          |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|---------------------|---------------------------------|-------------------|------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| B5             | Investigate<br>what other<br>organisations<br>in the town are<br>doing with<br>regards to fleet<br>renewal (e.g.<br>other Local<br>Authorities and<br>large<br>businesses)<br>and whether<br>there are<br>opportunities<br>(and funding)<br>for an<br>accelerated<br>take up of<br>ULEVs in the<br>town. | Promoting<br>Low Emission<br>Transport | Public Vehicle<br>Procurement -<br>Prioritising<br>uptake of low<br>emission<br>vehicles | 2019                          | TBC                                         | Ipswich<br>Borough<br>Council. Other<br>organisations | Depends on<br>the<br>organisation<br>as to the<br>funding<br>source | No                              | Partially<br>Funded | Unknown                         | Implementation    | Low                                                        | -                               | <ul> <li>SCC has been increasing the number of electric vehicles in its fleet, including site inspection vehicles. SCC is in the process of compiling a bid for the LEVI funding from central Government to make a continuation for the highly successful Plug in Suffolk Project which has accelerated the rollout of publicly accessible EV charging infrastructure across the County.</li> <li>In the Environment Strategy Team SCC have upgraded the Nissan eNV200 van to a Renault ZOE van which gives enough extra range so that there are now no issues with the distances required.</li> <li>Through the Carbon Charter there is ongoing focus on air quality including webinars and events such as on June 16th Clean air day https://www.eventbrite.co.uk/e/air-guality-and-your-business-tickets-347388477287</li> <li>IBC have supported the local CCG to develop their ICS Green Plan which is due to be rolled out on 1st July 2022. In terms of the ICS Green Plan, they have started some EV exploratory work. The NHS has committed to investing in Trust fleets being ELV or ULEV to help improve air quality and deliver net zero emission. All Trusts are undertaking a fleet review to this end. There is a commitment to switch the fleets.</li> </ul> | Completion date<br>unknown as likely to be<br>an ongoing measure. |
| B6             | Accelerate the<br>provision of on-<br>street public<br>EV charging<br>points                                                                                                                                                                                                                             | Promoting<br>Low Emission<br>Transport | Other                                                                                    | 2021                          | TBC                                         | Suffolk County<br>Council                             | Suffolk<br>County<br>Council                                        | NO                              | Partially<br>Funded | Unknown                         | Implementation    | Low                                                        | Provision of EV                 | The County Council has not installed any on-street charge<br>points and is awaiting the outcome and evaluation of<br>numerous national trial projects before making any further<br>decisions on the provision of on street charging. At this<br>time SCC has not changed its current position with<br>respect to on-street residential parking. Their position can<br>be found here: <u>https://www.suffolk.gov.uk/roads-</u><br><u>andtransport/transportplanning/electric-vehiclecharging-<br/>policy/</u> . Members of the public who are interested in<br>community on-street charging can request it via this link.<br>This will help SCC identify where more residential<br>charging facilities may be required in the future. Works are<br>underway to install additional public charging points at<br>both Park & Ride sites – these will be open to all, not just<br>P&R users.                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |
| В7             | Assist the<br>Councils Car<br>Parking<br>Services in the<br>development of<br>their policies<br>and strategies<br>to promote<br>clean travel<br>and improved<br>air quality.<br>Review use of<br>short and long<br>stay car parks                                                                        | Promoting<br>Low Emission<br>Transport | Other                                                                                    | 2019                          | 2024                                        | lpswich<br>Borough<br>Council                         | lpswich<br>Borough<br>Council                                       | NO                              | Not<br>Funded       | Unknown                         | Planning          | Low                                                        | -                               | A report on 'Off-Street Car Parks Review' is going to<br>Executive on 14th June 2022 which proposes increases to<br>the Council's car park tariffs and charging<br>hours. Additionally, a report of 'On-Street Parking Review'<br>is also going to Executive on 14th June 2022 which<br>proposes increases to tariffs, tariff structures and charging<br>hours for on-street paid for parking locations in the Ipswich<br>town centre area, excluding residents parking zones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                    | Category                    | Classification | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved                                      | Funding<br>Source                                         | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status   | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                                                                                                                                    | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|-------------------------------|---------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|---------------------|---------------------------------|-------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B8             | Continue to<br>explore the<br>possibility and<br>apply to<br>DEFRA for<br>grant funding<br>under Air<br>Quality Grant<br>Schemes and<br>any other<br>appropriate<br>funding                                                                                | Public<br>Information       | Other          | 2019                          | 2024                                        | lpswich<br>Borough<br>Council                                  | lpswich<br>Borough<br>Council                             | YES                             | Funded              | £100k -<br>£500k                | Implementation    | Low                                                        | Depends on the<br>nature of the<br>works relating to<br>grant funding.<br>Current grant<br>project will be a<br>reduction in<br>domestic<br>burning<br>complaints.<br>Reduced PM<br>concentrations | Ipswich secured £115,632 from Defra as part of the 2021<br>Air Quality Grant Programme to run a monitoring and<br>behavioural change campaign around domestic burning.<br>Ipswich have committed £33,939 in match funding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project currently in the<br>implementation phase.<br>Locations for sensors<br>and monitoring<br>equipment selected<br>and initial<br>messages/design<br>materials being<br>prepared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| В9             | Work with Bus<br>Operators in<br>the town (i.e.<br>Ipswich Buses,<br>First, Norse,<br>Beestons), to<br>encourage the<br>renewal of their<br>fleet to cleaner<br>i.e. Euro VI or<br>better and/or<br>low emission,<br>hybrid buses,<br>on certain<br>routes | Vehicle Fleet<br>Efficiency | Other          | 2019                          | 2024                                        | Suffolk County<br>Council and<br>Ipswich<br>Borough<br>Council | Bus<br>Operators<br>(plus other<br>sources of<br>funding) | NO                              | Partially<br>Funded | Unknown                         | Implementation    | Low                                                        | Reduced fleet<br>emissions                                                                                                                                                                         | Ipswich Buses - 13 Euro V buses acquired in 2019. 3 Euro<br>VI buses acquired in 2020. 5 Euro VI buses acquired in<br>2021. This projection may not be feasible given the<br>current economic uncertainty following the impact of Covid<br>but ideally would see the following numbers of vehicles<br>being replaced each year as they reach 15 years old:<br>2022 x 5 vehicles; 2023 x 7 vehicles; 2024 x 8 vehicles;<br>2025 x 12 vehicles; 2026 x 12 vehicles; 2027 x 12<br>vehicles; 2028 x 11 vehicles. Such a plan would depend<br>on shape and size of the bus network following the<br>pandemic along with advances in alternative fuels and<br>available funding for vehicles and associated re-fuelling<br>infrastructure. Following on from the Covid pandemic,<br>there is uncertainty across the economy, and particularly<br>regarding high street retail footfall and employment. Given<br>this, it is unlikely that any fleet will be replaced in 2022.<br>First - The Enhanced Partnership is up and running, but<br>as Suffolk were unsuccessful in their bid for funding under<br>the Bus Back Better bid, they are concentrating on the<br>measures put in the original EP Plan. Given the<br>wholescale uncertainty around the bus industry at the<br>moment, especially when the last tranche of DTT funding<br>finishes at the start of October, there is uncertainty with<br>regards to fleet renewal. | SCC advise that match funding<br>requirements prevented them<br>making bids under the recent<br>"All Electric Bus Town" and<br>"Zero Emission Bus (ZEBRA)"<br>opportunities put forward by<br>the DIT. Conversion to electric<br>or alternative fuels (e.g.<br>Hydrogen) requires significant<br>investment in depot facilities<br>as well as the vehicles<br>themselves being more<br>expensive than diesel buses.<br>Although support funding has<br>been available throughout the<br>pandemic period to help<br>operators continue running<br>with massive reductions in<br>passengers (at one point<br>averaging 20% of pre-covid<br>use) they have not been able<br>to plan ahead for new bus<br>purchases. Suffolk operators<br>are seeing the same level of<br>patronage return as the<br>national picture, with 70-85%<br>of fare-payers and around 50%<br>of concessionary pass<br>journeys when compared to<br>pre-covid numbers. Pandemic<br>support funding will cease in<br>October, but operators are<br>predicting they will still only be<br>up to 90% by then and do not<br>expect to reach 100% and<br>start growth again for another<br>year without help. As such,<br>they still have no spare funding<br>to invest in new vehicles of any<br>kind.<br>We are more likely to see early<br>adoption of EVs from the<br>Community Transport<br>operators – a number of them<br>are actively pursuing options at<br>present. The key issue for<br>larger buses is range, with<br>hydrogen being the preferred<br>option for inter-urban routes<br>but no fuelling facilities<br>available in Suffolk as yet.<br>This may be delivered through<br>the hydrogen hub at Sizewell<br>C. |

| Measure<br>No. | Measure                                                                                                                                                                                                                                               | Category                                    | Classification                                            | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved     | Funding<br>Source             | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                   | Progress to Date                                                                                        | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B10            | Work with<br>other Bus<br>Operators in<br>the town (i.e.<br>First, Norse,<br>Beestons) to<br>encourage the<br>renewal of their<br>fleets to<br>cleaner i.e.<br>Euro VI or<br>better and/or<br>low emission,<br>hybrid buses,<br>on certain<br>routes. | Transport<br>Planning and<br>Infrastructure | Other                                                     |                               |                                             |                               |                               |                                 |                   |                                 |                   |                                                            |                                                                                   | Amalgamated measure B10 with measure B9 so the combined measure refers to all bus operators in the town |                                                                                                                                                                                                                                                                                                               |
| B11            | Introduction of<br>taxi emissions<br>standards<br>policy                                                                                                                                                                                              | Promoting<br>Low Emission<br>Transport      | Taxi Licensing conditions                                 | 2018                          | 2018                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | No                              | Funded            | Unknown                         | Completed         | Low                                                        | Reduction in<br>non-euro 6<br>diesel                                              | Completed - New Hackney Carriage and Private Hire<br>Licensing Policy 2019-2022                         | Policy came into place<br>relating to age of<br>vehicles in 2020.<br>Average age of vehicle<br>licenced by IBC<br>approx. 8 years. In<br>order to be licenced,<br>vehicles must be less<br>than 15 years old.<br>Costs not known for<br>introducing measure.                                                  |
| B12            | Review<br>opportunities<br>for alterations<br>to traffic<br>management<br>to reduce<br>congestion in<br>AQMAs,<br>including the<br>provision of red<br>routes.                                                                                        | Traffic<br>Management                       | UTC,<br>Congestion<br>management,<br>traffic<br>reduction | 2019                          | TBC                                         | Suffolk County<br>Council     | Suffolk<br>County<br>Council  | NO                              | Not<br>Funded     | Unknown                         | Planning          | AQMA No.5<br>approx. 2%<br>reductio n in<br>NOx            | Reduction in<br>congestion on<br>Civic Drive/ St<br>Matthews Street<br>roundabout | Opportunities to alterations to traffic management linked to<br>ISPA mitigation work and town strategy. | No completion date<br>known. Possible<br>mitigation dependant<br>on funding and<br>appropriate support<br>from stakeholders.<br>Likely that funding will<br>be sought as and when<br>opportunity arises,<br>unless suitable funding<br>agreement made<br>available from other<br>sources e.g. Defra or<br>DfT |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                      | Category                                         | Classification                                    | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved     | Funding<br>Source             | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                             | Progress to Date                                                                | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B13            | Review (in<br>conjunction<br>with other IBC/<br>SCC work<br>streams), the<br>traffic<br>management<br>arrangements<br>in the St<br>Matthews St/<br>Norwich Rd<br>corridor.<br>Maintaining<br>delivery<br>facilities, whilst<br>minimising<br>disruption to<br>traffic flows. | Freight and<br>Delivery<br>Management            | Quiet & out of<br>hours delivery                  | 2019                          | TBC                                         | Suffolk County<br>Council     | Suffolk<br>County<br>Council  | No                              | Not<br>Funded     | Unknown                         | Planning          | Low                                                        | Reduction in<br>congestion along<br>Norwich Road &<br>St Matthews<br>Street | This will tie into the IPSA transport mitigation work. See measure C7.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C1             | Develop and<br>implement a<br>Low Emission<br>Strategy SPD                                                                                                                                                                                                                   | Policy<br>Guidance and<br>Development<br>Control | Low Emissions<br>Strategy                         | 2019                          | 2021                                        | Ipswich<br>Borough<br>Council | Ipswich<br>Borough<br>Council | No                              | Funded            | Unknown                         | Completed         | Medium                                                     | Implementation<br>of SPD                                                    | Low Emissions SPD formally adopted in November 2021.                            | The Low Emissions<br>Supplementary<br>Planning Document<br>was adopted in<br>November 2021 and is<br>now in use. Training<br>was delivered to<br>Council planning staff,<br>whilst agents and<br>developers were<br>alerted to the new<br>requirements to enable<br>planning applications<br>to be validated. Work<br>is due to commence on<br>two remaining<br>guidance notes to<br>support its<br>implementation,<br>relating to:the use of<br>green infrastructure in<br>developments to help<br>manage air quality,<br>and mechanisms<br>needed to allocate<br>damage cost payments<br>through \$106 to AQ<br>projects. |
| C2             | Embed air<br>quality<br>considerations<br>in the Councils<br>Local Plan                                                                                                                                                                                                      | Policy<br>Guidance and<br>Development<br>Control | Air Quality<br>Planning and<br>Policy<br>Guidance | 2019                          | 2021                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | NO                              | Funded            | Unknown                         | Completed         | Medium                                                     | Air quality<br>considerations<br>embedded in<br>Local Plan                  | Local Plan formally adopted on 23rd March 2022. Includes policy DM3 Air Quality |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                                                                                     | Category                                         | Classification                                    | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved     | Funding<br>Source             | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                          | Progress to Date                                     | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                                                      |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СЗ             | Comment on<br>best practice<br>measures in<br>relation to air<br>quality in<br>planning<br>applications<br>and major<br>developments.<br>Support<br>alternatives to<br>single<br>occupancy car<br>use arising<br>from new<br>developments,<br>through the<br>use of robust<br>travel plans<br>secured<br>through the<br>planning<br>process | Policy<br>Guidance and<br>Development<br>Control | Air Quality<br>Planning and<br>Policy<br>Guidance | 2019                          | 2024                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | NO                              | Funded            | £10k - 50k                      | Implementation    | Medium                                                     | 100% of relevant<br>planning<br>applications<br>assessed | Ongoing measure - all relevant applications assessed | Air Quality<br>Assessments asked for<br>in line with<br>EPUK/IAQM guidance.<br>Low emissions SPD<br>should support this<br>measure. SCC are<br>able to deliver travel<br>plans to new<br>developments, which<br>helps with a number of<br>factors and ensures<br>consistency of<br>messages regarding<br>active and sustainable<br>travel options across<br>all developments. |

| Measure<br>No. | Measure                                                                                                                                                                    | Category                                         | Classification                                                                                                                                      | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved | Funding<br>Source            | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status   | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                       | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|---------------------------|------------------------------|---------------------------------|---------------------|---------------------------------|-------------------|------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C4             | Support Suffolk<br>County's<br>development of<br>Local Ipswich<br>Cycling and<br>Walking<br>Infrastructure<br>Plans, and<br>work to<br>improve<br>existing cycle<br>routes | Policy<br>Guidance and<br>Development<br>Control | Regional<br>Groups Co-<br>ordinating<br>programmes to<br>develop Area<br>wide<br>Strategies to<br>reduce<br>emissions and<br>improve air<br>quality | 2019                          | TBC                                         | Suffolk County<br>Council | Suffolk<br>County<br>Council | NO                              | Partially<br>Funded | Unknown                         | Implementation    | Medium                                                     | Implementation<br>of Walking and<br>Cycling<br>Infrastructure<br>Plan | The Planning Policy Team met transport officers from<br>Suffolk County Council on 10th February 2022 to discuss<br>taking forward work on an Ipswich Local Cycling and<br>Walking Infrastructure Plan (LCWIP). The plan would act<br>as a bidding vehicle for active travel funding available<br>nationally. A significant amount of work has already been<br>done both by Suffolk County Council, which developed a<br>draft Ipswich LCWIP in 2020, and Ipswich Borough<br>Council, which adopted a Cycling Strategy Supplementary<br>Planning Document in 2016. There is significant alignment<br>between the strategies. Work needed to ensure they meet<br>LCWIP criteria, prioritise measures and consult the public<br>is currently being scoped out. It also links to work on the<br>Ipswich Strategic Planning Area Transport Mitigation<br>Strategy. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C5             | Support the<br>Local<br>Transport Plan<br>to create a<br>more efficient<br>use of the<br>highway in and<br>around the<br>town, and<br>across Suffolk                       | Policy<br>Guidance and<br>Development<br>Control | Regional<br>Groups Co-<br>ordinating<br>programmes to<br>develop Area<br>wide<br>Strategies to<br>reduce<br>emissions and<br>improve air<br>quality | 2019                          | 2026                                        | Suffolk County<br>Council | Suffolk<br>County<br>Council | NO                              | Partially<br>Funded | Unknown                         | Planning          | Medium                                                     | Development of<br>LTP                                                 | SCC is updating its Local Transport Plan to reflect the<br>Council's and Government's zero carbon ambitions. As<br>part of this process, an evidence base will be developed to<br>inform the strategic town plans that will follow the<br>overarching policy. The emerging LTP will emphasise the<br>need to manage demand on the existing network ahead of<br>providing more capacity. As such, it is planned that the<br>LTP reflects the hierarchy of road users which places<br>sustainable transport modes at the highest priority levels<br>for interventions and provides for single-occupancy car<br>use last.                                                                                                                                                                                                                                        | The DfT is due to<br>announce a change in<br>guidance for LTPs in<br>October 2022 with a focus<br>on decarbonisation and a<br>requirement to quantify<br>carbon reductions to<br>achieve a locally<br>developed pathway to net<br>zero. The DfT has<br>suggested that Local<br>Transport Authorities, with<br>the support of their Sub-<br>National Transport<br>Bodies, should develop a<br>carbon model to calculate<br>baseline emissions and<br>assess the impact of<br>scheme proposals as<br>early as possible. SCC is<br>working with Transport<br>East on the development<br>of an Agent Based Model<br>for the region that will help<br>to assess the impact of<br>schemes against carbon<br>reduction targets. |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                                                                                     | Category                                         | Classification                                                                                                                                      | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved                                                                                                                | Funding<br>Source                                                                                                                                 | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status   | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                          | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|---------------------------------|-------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C6             | Supporting,<br>where<br>appropriate,<br>Suffolk Climate<br>Change,<br>Environment &<br>Energy Board's<br>development<br>and<br>implementation<br>of the Suffolk<br>Climate<br>Emergency<br>Plan.                                                                                                                                            | Policy<br>Guidance and<br>Development<br>Control | Regional<br>Groups Co-<br>ordinating<br>programmes to<br>develop Area<br>wide<br>Strategies to<br>reduce<br>emissions and<br>improve air<br>quality | 2019                          | 2030                                        | Suffolk Climate<br>Change,<br>Energy &<br>Environment<br>Board<br>(SCCEEB)<br>reporting to<br>Suffolk Public<br>Sector Leaders<br>(SPSL) | Suffolk<br>Climate<br>Change,<br>Energy &<br>Environment<br>Board<br>(SCCEEB)<br>reporting to<br>Suffolk<br>Public<br>Sector<br>Leaders<br>(SPSL) | NO                              | Partially<br>Funded | £1 million -<br>£10 million     | Implementation    | - (Relates to<br>CO2<br>emissions<br>not NO2)              | Reduction in<br>absolute CO2<br>emissions in<br>Suffolk  | The Suffolk Climate Emergency Plan has been agreed by<br>Suffolk's Public Sector Leaders and is available at:<br>https://www.greensuffolk.org/about/suffolk-climatechange-<br>partnership/. IBC have involvement in all of the SCEP<br>action themes:<br>https://www.greensuffolk.org/app/uploads/2021/07/Suffolk-<br>CEP-Table-of-actions.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Since the last update,<br>a Programme Manager<br>has been appointed<br>and work is<br>progressing in<br>delivering the Plan.<br>Theme groups have<br>been set up for each of<br>the key themes within<br>the SCEP and are<br>progressing Action<br>delivery. SPSL have<br>pledged £1.5mn to<br>support this work, of<br>which £310k has been<br>committed for resource<br>support and a study<br>and a further £380k<br>allocated for specific<br>project work. |
| C7             | Supporting,<br>where<br>appropriate,<br>the measures<br>identified in the<br>Ipswich<br>Strategic<br>Planning Area<br>Transport<br>Mitigation<br>Strategy<br>developed by<br>Suffolk County<br>Council to<br>support the<br>Ipswich<br>Strategic Plan<br>Area (ISPA)<br>local plans,<br>works to be<br>funded by the<br>ISPA<br>authorities | Policy<br>Guidance and<br>Development<br>Control | Regional<br>Groups Co-<br>ordinating<br>programmes to<br>develop Area<br>wide<br>Strategies to<br>reduce<br>emissions and<br>improve air<br>quality | 2021                          | TBC                                         | Suffolk County<br>Council. IPSA<br>authorities                                                                                           | IPSA<br>authorities                                                                                                                               | NO                              | Not<br>Funded       | Unknown                         | Planning          | Medium                                                     | Implementation<br>of transport<br>mitigation<br>strategy | The primary strands of work ongoing relate to the<br>preparation of a five-year Implementation Plan and,<br>integral to this, seeking sources of funding to supplement<br>developer contributions. SCC is preparing a Levelling Up<br>bid around Ipswich linked to transport mitigation. SCC<br>and ISPA Authorities met with WSP in November 2021 to<br>discuss how costs on implementing the plan will be<br>apportioned. It is proposed that this will be calculated via<br>the proportion of trips arising from new development within<br>Suffolk passing into/out of Ipswich. WSP will now make<br>recommendations on how plan will be paid for and to be<br>agreed by LPA's. WSP also reviewing the August 2019<br>ISPA strategy to ensure it is current and to develop an<br>implementation plan.<br>IPSA strategy and implementation plan needs to align with<br>the Transport Strategy for the East of England. SCC are<br>aware of this. | SCC have not yet<br>received agreement<br>from the LPA's on<br>funding the ISPA<br>transport mitigation<br>work. However, they<br>have recruited 2<br>additional active travel<br>officers (last October),<br>they are fixed-term 2<br>year posts, but if<br>further funding<br>becomes available<br>(e.g., through ISPA)<br>we would seek to<br>maintain & expand<br>these roles.                                                                              |

| Measure<br>No. | Measure                                                                                                                                                                                                                                                                                       | Category                               | Classification | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved                                      | Funding<br>Source                                                 | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                                                                            | Progress to Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments / Barriers<br>to Implementation                                                                                                                                                                                                                                                                            |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|-------------------------------|---------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D1             | Development<br>and<br>implementation<br>of campaign to<br>provide<br>information<br>about the<br>impacts of<br>domestic<br>burning and<br>good practice,<br>including wood<br>burners and<br>burning of<br>garden waste                                                                       | Public<br>Information                  | Other          | 2021                          | 2024                                        | lpswich<br>Borough<br>Council                                  | lpswich<br>Borough<br>Council                                     | YES                             | Funded            | Unknown                         | Implementation    | Low                                                        | Reduction in<br>number of<br>domestic<br>burning<br>complaints<br>received.<br>Reduction in PM<br>concentrations                           | Information produced on IBC website relating to domestic<br>burning. Bonfire complaint letters also updated with<br>information. Ipswich secured £115,632 from Defra as part<br>of the 2021 Air Quality Grant Programme to run a<br>monitoring and behavioural change campaign around<br>domestic burning. Ipswich have committied £33,939 in<br>match funding. Further information on domestic burning<br>will be provided as part of the Defra grant funded project<br>and link to the Ipswich 'Air Aware' Campaign being<br>planned. |                                                                                                                                                                                                                                                                                                                     |
| D2             | Consider and<br>explore the<br>feasibility of<br>further<br>measures that<br>would improve<br>air quality<br>within both<br>AQMAs and<br>across the<br>borough,<br>including<br>emissions<br>testing within<br>AQMAs, clean<br>air zones, low<br>emission zones<br>and congestion<br>charging | Promoting<br>Low Emission<br>Transport | Other          | 2019                          | 2026                                        | Suffolk County<br>Council and<br>Ipswich<br>Borough<br>Council | Suffolk<br>County<br>Council and<br>Ipswich<br>Borough<br>Council | NO                              | Not<br>Funded     | Unknown                         | Planning          | High (if<br>LEZ/<br>congestion<br>charging<br>introduced)  | -                                                                                                                                          | Following on from the findings of the Air Quality<br>Assessment commissioned by the Ipswich Strategic<br>Planning Area, the Council need to explore how we<br>address the predicted future exceedance within AQMA 2<br>in both 2026 and 2036 further with SCC. We are now<br>monitoring at this location to ascertain current<br>concentrations. Current concentrations below NO2<br>objective level. Neither IBC or SCC are intending to<br>implement a low emission zone or congestion charging at<br>this time.                      | 2026 and 2036 for<br>local plan growth<br>across the ISPA areas.<br>Possible mitigation<br>dependant on<br>funding and<br>appropriate support<br>from stakeholders.<br>Indicative costs for<br>delivery of the IPSA<br>mitigation strategy<br>have been provided to<br>all LPAs and formed<br>the basis of the IDP. |
| D3             | Provision of A<br>rated boilers in<br>IBC owned<br>housing stock                                                                                                                                                                                                                              | Promoting<br>Low Emission<br>Plant     | Other Policy   | 2019                          | 2022                                        | lpswich<br>Borough<br>Council                                  | lpswich<br>Borough<br>Council                                     | NO                              | Funded            |                                 | Implementation    | Low                                                        | All larger<br>properties are to<br>have low NOx<br>boilers, defined<br>as boilers that<br>meet a dry NOx<br>emission rating<br>of 40mg/kWh | Ongoing installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IBC are exploring<br>alternative technology<br>for heating which will<br>be trialled as part of a<br>pilot project. This will<br>help IBC learn from the<br>product installations<br>and use so we can<br>update our strategy to<br>meet future emissions<br>targets.                                               |

| Measure<br>No. | Measure                                                                                                                                             | Category                                         | Classification | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved     | Funding<br>Source             | Defra<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure<br>Status | Reduction<br>in Pollutant<br>/ Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                           | Progress to Date                                                                                                                                                                                    | Comments / Barriers<br>to Implementation |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| D4             | Work with the<br>Private Sector<br>Housing team<br>to improve their<br>renovation<br>grant criteria<br>and include air<br>quality<br>considerations | Policy<br>Guidance and<br>Development<br>Control | Other policy   | 2019                          | 2024                                        | lpswich<br>Borough<br>Council | lpswich<br>Borough<br>Council | NO                              | Funded            | £100k -<br>£500k                | Completed         | Low                                                        | 100% of all<br>grants with air<br>quality<br>implications | Policy revised to include energy efficient measures e.g. A rated boilers and insulation, thereby helping to reduce energy use and associated emissions. £100k budget set aside for grants annually. |                                          |
## 2.3 PM<sub>2.5</sub> – Local Authority Approach to Reducing Emissions and/or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of  $PM_{2.5}$  (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that  $PM_{2.5}$  has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

The Suffolk Air Quality Group, of which Ipswich Borough Council is a member, has engaged with Suffolk County Council (SCC) Public Health and Protection to pursue a unified approach to tackling PM<sub>2.5</sub>. This is focused on promoting modal shift away from motor vehicle use towards active means of travel such as walking and cycling.

The Public Health Outcomes Framework (PHOF) is a Public Health England data tool, intended to focus public health action on increasing healthy life expectancy and reducing differences in life expectancy between communities. The PHOF includes an indicator, based on the effect of particulate matter (PM<sub>2.5</sub>) on mortality. According to the public health outcomes framework, the fraction of mortality in those aged over 30 years, attributable to particulate air pollution (measured as PM<sub>2.5</sub>) in 2020 in Ipswich is 6.2%, above the average for England (5.6%), and similar to that of the East of England Region (5.80%). This would suggest that PM<sub>2.5</sub> concentrations in Ipswich are slightly higher than other areas in the UK<sup>7</sup>.

The Council does not currently conduct any real time monitoring for either PM<sub>10</sub> or PM<sub>2.5</sub>. However, as highlighted in the 2021 and 2020 ASRs, the Council commissioned a study to assess the air quality impact of the proposed aligned local plans for the Ipswich Strategic Planning Area (ISPA). The assessment considered the impacts of the IBC Local Plan without and with Transport Mitigation Measures. The results of the assessment show that, based on the significance criteria taken from the Environmental Protection UK / Institute of Air Quality Management (EPUK/IAQM) guidance '*Land-Use Planning & Development* 

<sup>&</sup>lt;sup>7</sup> Public Health England, Public Health Outcomes Framework, accessed 31/05/2022. Available at: <u>https://fingertips.phe.org.uk/profile/public-health-outcomes-</u> framework/data#page/1/gid/1000043/pat/6/par/E12000006/ati/101/are/E07000202/yrr/3/cid/4/tbm/1

*Control: Planning For Air Quality*<sup>'8</sup>, the effects of the Ipswich Local Plan are predicted to be negligible in 2026 and 2036 for PM<sub>10</sub> and PM<sub>2.5</sub>. This is a positive finding, but the Council will continue to work towards reducing concentrations of particulates. The modal shift to more active & sustainable travel choices, delivered through the ISPA strategy will also contribute to the reduction of particulates. Through reduced vehicle use, tyre and brake dust will lessen. Increased walking and cycling will reduce the need for short journeys in urban areas in and through the AQMAs.

When using the current Defra background mapping resource (base year 2018, assessment year 2021), the maximum predicted background annual mean  $PM_{2.5}$  concentration within Ipswich is 11.1µm/m<sup>3</sup>. This is below the air quality standard for  $PM_{2.5}$  of 25µm/m<sup>3</sup> but above the World Health Organisation (WHO) air quality guideline value of 5µm/m<sup>3</sup>.

Following on from the Councils successful bid to Defra, the Council secured £115,632 from Defra as part of the 2021 Air Quality Grant Programme to run a monitoring and behavioural change campaign around domestic burning. As part of this, the Council will be procuring a reference analyser and six portable sensors. The analyser and sensors will measure both PM<sub>10</sub> and PM<sub>2.5</sub>. Findings from the monitoring programme, together with how the behavioural change aspect of the campaign is progressing, will be reported in the 2023 ASR. It is hoped that the behavioural change aspect of the campaign spect of the campaign will lead to a reduction in concentrations of particulate matter associated with domestic burning.

During the latter part of 2019 and in 2020, the Council, together with all the other Local Authorities across Suffolk worked with Suffolk County Council's Transport and Public Health colleagues to prepare an '<u>Air Quality Profile</u>' report for Suffolk. The report maps, at a district and borough level, local air pollution levels and explores evidence-based interventions that can be undertaken by local authorities, businesses, communities and individuals to improve air quality. Unfortunately, due to the COVID-19 pandemic and the associated impact on resource, the report was not finalised in 2020. The report has since been published in June 2021 following sign-off from the Suffolk Director of Public Health.

Following on from the publication of the Suffolk Air Quality Profile, an officer from the Council, together with other stakeholders, presented the findings at an Air Quality Summit

<sup>&</sup>lt;sup>8</sup> 8 EPUK/IAQM, 2017, Land use Planning & Development Control: Planning for Air Quality. Available at: <u>http://www.iaqm.co.uk/text/guidance/air-quality-planning-guidance.pdf</u>

held in January 2022. The summit was attended by elected members and senior Council Officers from Local Authorities across Suffolk. Officers also discussed matters pertaining to air quality in general. It is hoped that the summit will trigger further action to reduce air pollution.

We will continue to consult with Suffolk County Council Public Health colleagues and be advised by them, and national guidance, on any relevant measures that will reduce exposure to PM<sub>2.5</sub>.

In addition to the above, Council officers are keenly awaiting the introduction of new PM<sub>2.5</sub> targets following the requirement under the Environment Act 2021. It is hoped that Defra will produce guidance to support local authorities in achieving these targets.

# 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

This section sets out the monitoring undertaken within 2021 by Ipswich Borough Council and how it compares with the relevant air quality objectives. In addition, monitoring results are presented for a five-year period between 2017 and 2021 to allow monitoring trends to be identified and discussed.

## 3.1 Summary of Monitoring Undertaken

## 3.1.1 Automatic Monitoring Sites

Ipswich Borough Council undertook automatic (continuous) monitoring at two sites during 2021 (IPS3 – Chevallier Street / IPS04 – St Matthews Street). Table A.1 in Appendix A shows the details of the automatic monitoring sites. The <u>Air Quality England</u> page presents automatic monitoring results for Ipswich Borough Council, with automatic monitoring results also available through the <u>UK-Air Website</u>.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

Following on from the Councils successful bid to Defra, the Council secured £115,632 from Defra as part of the 2021 Air Quality Grant Programme to run a monitoring and behavioural change campaign around domestic burning. As part of this, the Council will be procuring a reference analyser and six portable sensors. The analyser and sensors will measure both PM<sub>10</sub> and PM<sub>2.5</sub>. Findings from the monitoring programme will be reported in the 2023 ASR.

## 3.1.2 Non-Automatic Monitoring Sites

As part of its normal monitoring programme, Ipswich Borough Council undertook nonautomatic (i.e. passive) monitoring of NO<sub>2</sub> at 90 sites during 2021. Table A.2 in Appendix A presents the details of the non-automatic sites.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) for the diffusion tubes, including

bias adjustments and any other adjustments applied (e.g. annualisation and/or distance correction), are included in Appendix C.

In order to further understand pollution levels around the town, two additional nonautomatic monitoring locations were installed in 2021. These locations are at:

- Tube 97 Crown Street at the junction with Northgate Street. Location chosen due to air quality modelling as part of the Council's emerging Local Plan indicating that the air may experience an exceedance of the annual mean objective level in both 2026 and 2036.
- Tube 98 Fore Street. Location chosen to help ensure the Council has appropriately defined the boundary of AQMA 3.

Due to issues, the following diffusion tubes were relocated in 2021:

- Tube 6 Kings Avenue. Relocated to a nearby receptor on Kings Avenue due to street furniture being moved.
- Tube 75 Grimwade Street. Relocated to another nearby relevant receptor on Grimwade Street due to issues with access.
- Tube 92 Ipswich Hospital. Relocated to a nearby lamppost at the hospital due to street furniture being moved.

All relocated tubes were classed as new locations in 2021 for the purposes of accurate data analysis and the reporting of trends.

Once bias and distance corrected, none of the new locations (including relocated locations) were in exceedance of the annual mean NO<sub>2</sub> concentration. Further details can be found in Appendix B. The Council will continue to monitor levels of pollution at these sites in 2022 and report on them in the 2023 ASR.

## 3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias, annualisation (where the annual mean data capture is below 75% and greater than 25%), and distance correction. Further details on adjustments are provided in Appendix C.

### 3.2.1 Nitrogen Dioxide (NO<sub>2</sub>)

Table A.3 and Table A.4 in Appendix A compare the ratified and adjusted monitored NO<sub>2</sub> annual mean concentrations for the past five years with the air quality objective of  $40\mu g/m^3$ . Note that the concentration data presented represents the concentration at the location of the monitoring site, following the application of bias adjustment and annualisation, as required (i.e. the values are exclusive of any consideration to fall-off with distance adjustment).

For diffusion tubes, the full 2021 dataset of monthly mean values is provided in Appendix B. Note that the concentration data presented in Table B.1 includes distance corrected values, only where relevant. There are no annual averages greater than  $60\mu$ g/m<sup>3</sup> that would indicate an exceedance of the 1-hour mean objective.

Table A.5 in Appendix A compares the ratified continuous monitored NO<sub>2</sub> hourly mean concentrations for the past five years with the air quality objective of  $200\mu g/m^3$ , not to be exceeded more than 18 times per year.

Looking at the locally bias adjusted and distance corrected data for the non-automatic monitoring locations, there were three exceedances of the annual mean NO<sub>2</sub> concentration. The sites that recorded exceedances were:

- 1 site located within AQMA 2. Tubes 11, 12 & 19 triplicate.
- 2 sites located within AQMA 5. Tube 52 and tubes 64 & 65 duplicate.

No sites recorded an annual means greater than 60µg/m<sup>3</sup> so an exceedance of the 1-hour mean objective is not indicated.

Six sites recorded concentrations within 10% below the annual mean NO<sub>2</sub> objective level, these were:

- 1 site located within AQMA 2. Tube 68.
- 2 sites located within AQMA 3. Tubes 30 and 39.
- 1 site located within AQMA 5. Tube 49.
- 2 sites located outside AQMAs. Tubes 18 and 31. It should be noted that tube 31 has no relevant receptor near to this site so the annual mean objective level does not apply.

When comparing the 2021 results to the 2020 results generated using the locally derived bias adjustment factor, in 2020 there were no exceedances and in 2021 there were three recorded exceedances (listed above). In 2020, there were three sites that recorded

concentrations within 10% below the annual mean NO<sub>2</sub> objective level. These sites were in AQMA 2 (sites 11, 12 & 19 – triplicate) and AQMA 5 (sites 52 and 64 & 65 – duplicate).

Figures A.1 – A.6 shows bias corrected trendline plots for clusters of passive monitoring locations in and around each of the 4 AQMAs. Despite AQMA 4 being revoked in August 2021, it is included for transparency. All would appear to indicate that annual mean NO<sub>2</sub> levels remained essentially unchanged between 2013 - 2019, with a marginal downward trajectory when looking at the results analysed via the local bias correction Ipswich Borough Council LAQM Annual Status Report 2021 factor. When looking at the bias corrected data for 2020, annual mean NO<sub>2</sub> concentrations dropped considerably compared to previous years. An increase in the annual mean NO<sub>2</sub> concentration can be seen in 2021 compared to 2020, but concentrations generally remained below 2019 levels. It is likely that the increase in concentrations in 2021 compared to 2020 was linked to the relaxation of Government restrictions associated with the COVID-19 pandemic.

#### 3.2.2 Particulate Matter (PM<sub>10</sub>)

Ipswich Borough Council does not monitor for particulate matter ( $PM_{10}$ ). However, as part of the Councils successful air quality grant application to Defra in 2021, the Council will begin to monitor for  $PM_{10}$  in 2022. Data collected in 2022 will be reported on in the 2023 ASR submission.

### 3.2.3 Particulate Matter (PM<sub>2.5</sub>)

Ipswich Borough Council does not monitor for particulate matter ( $PM_{2.5}$ ). However, as part of the Councils successful air quality grant application to Defra in 2021, the Council will begin to monitor for  $PM_{2.5}$  in 2022. Data collected in 2022 will be reported on in the 2023 ASR submission.

### 3.2.4 Sulphur Dioxide (SO<sub>2</sub>)

Ipswich Borough Council does not monitor for Sulphur Dioxide (SO<sub>2</sub>) – previous screening work has not suggested that there will be any exceedance of the objective levels.

## **Appendix A: Monitoring Results**

#### Table A.1 – Details of Automatic Monitoring Sites

| Site<br>ID | Site Name          | Site Type | X OS<br>Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which AQMA?                                | Monitoring<br>Technique | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Inlet<br>Height<br>(m) |
|------------|--------------------|-----------|-------------------------------|--------------------------------|-------------------------|--------------------------------------------------------|-------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------|
| IPS3       | Chevallier Street  | Roadside  | 615261                        | 245350                         | NO2                     | NO. Was in<br>AQMA 1 until<br>amended on<br>19/08/2021 | Chemiluminescent        | 2.5                                                       | 2.5                                                          | 1.5                    |
| IPS04      | St Matthews Street | Roadside  | 615870                        | 244858                         | NO2                     | NO                                                     | Chemiluminescent        | 12.8                                                      | 2.9                                                          | 1.38                   |

### Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable

## Table A.2 – Details of Non-Automatic Monitoring Sites

| Diffusion<br>Tube ID | Site Name                         | Site Type  | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA?                               | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|-----------------------------------|------------|-------------------------------|--------------------------------|-------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 1                    | Civic Drive                       | Roadside   | 615992                        | 244412                         | NO2                     | No                                                       | 18.8                                                         | 6.0                                                          | No                                                       | 2.6                   |
| 2                    | Chevallier Street                 | Roadside   | 615144                        | 245245                         | NO2                     | No following<br>revocation of<br>AQMA 4 on<br>19/08/2021 | 1.6                                                          | 2.0                                                          | No                                                       | 2.4                   |
| 3                    | Coprolite Street /<br>Duke Street | Kerbside   | 617070                        | 244039                         | NO2                     | No                                                       | N/A                                                          | 0.8                                                          | No                                                       | 2.6                   |
| 4                    | Norwich Road                      | Roadside   | 615620                        | 245000                         | NO2                     | No                                                       | 0.0                                                          | 5.7                                                          | No                                                       | 2.4                   |
| 5                    | Fore Street                       | Roadside   | 616887                        | 244128                         | NO2                     | Yes - AQMA<br>3                                          | 0.9                                                          | 3.3                                                          | No                                                       | 2.4                   |
| 6                    | Kings Avenue                      | Background | 617288                        | 244429                         | NO2                     | No                                                       | 0.0                                                          | 4.3                                                          | No                                                       | 2.1                   |
| 7                    | Bramford Road                     | Roadside   | 615007                        | 245239                         | NO2                     | No                                                       | 0.0                                                          | 5.6                                                          | No                                                       | 2.3                   |
| 8, 9, 10             | Bramford Road                     | Roadside   | 615125                        | 245209                         | NO2                     | No                                                       | 4.3                                                          | 2.2                                                          | No                                                       | 2.5                   |
| 13                   | Bramford Lane                     | Roadside   | 615117                        | 245305                         | NO2                     | No                                                       | 3.3                                                          | 1.2                                                          | No                                                       | 2.5                   |
| 14                   | Chevallier Street                 | Roadside   | 615285                        | 245393                         | NO2                     | Yes - AQMA<br>1                                          | 0.4                                                          | 2.5                                                          | No                                                       | 2.2                   |
| 15                   | Tavern Street                     | Background | 616282                        | 244643                         | NO2                     | No                                                       | N/A                                                          | N/A                                                          | No                                                       | 2.6                   |
| 16                   | Valley Road /<br>Westwood Court   | Roadside   | 615362                        | 245437                         | NO2                     | No                                                       | 2.6                                                          | 3.1                                                          | No                                                       | 2.5                   |

| Diffusion<br>Tube ID | Site Name                                    | Site Type | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA?                               | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|----------------------------------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 17                   | Woodbridge Road                              | Roadside  | 616993                        | 244659                         | NO2                     | No                                                       | 2.1                                                          | 1.8                                                          | No                                                       | 2.5                   |
| 18                   | Yarmouth Road                                | Roadside  | 615090                        | 245178                         | NO2                     | No                                                       | 0.0                                                          | 3.2                                                          | No                                                       | 2.2                   |
| 11, 12,<br>19        | St Margaret's<br>Street / Piper's<br>Court   | Roadside  | 616593                        | 244753                         | NO2                     | Yes - AQMA<br>2                                          | 0.0                                                          | 2.5                                                          | No                                                       | 2.3                   |
| 20                   | Fonnereau Road                               | Roadside  | 616458                        | 244829                         | NO2                     | No                                                       | 1.8                                                          | 2.2                                                          | No                                                       | 2.6                   |
| 21                   | St Margaret's<br>Plain                       | Roadside  | 616494                        | 244807                         | NO2                     | Yes - AQMA<br>2                                          | N/A                                                          | 2.0                                                          | No                                                       | 2.4                   |
| 22                   | St Margaret's<br>Plain / Northgate<br>Street | Roadside  | 616489                        | 244785                         | NO2                     | Yes - AQMA<br>2                                          | N/A                                                          | 1.6                                                          | No                                                       | 2.6                   |
| 23                   | St Margaret's<br>Green                       | Roadside  | 616645                        | 244784                         | NO2                     | No                                                       | 0.0                                                          | 3.3                                                          | No                                                       | 2.5                   |
| 24                   | St Margaret's<br>Street                      | Roadside  | 616663                        | 244692                         | NO2                     | Yes - AQMA<br>2                                          | N/A                                                          | 3.3                                                          | No                                                       | 2.4                   |
| 25                   | St Helen's Street                            | Roadside  | 616753                        | 244582                         | NO2                     | Yes - AQMA<br>2                                          | 1.1                                                          | 3.0                                                          | No                                                       | 2.5                   |
| 26                   | St Helen's Street /<br>Grimwade Street       | Roadside  | 616971                        | 244511                         | NO2                     | No                                                       | 0.0                                                          | 3.6                                                          | No                                                       | 2.3                   |
| 27                   | Argyle Street                                | Roadside  | 616965                        | 244546                         | NO2                     | Yes - AQMA<br>2                                          | 0.3                                                          | 1.2                                                          | No                                                       | 2.3                   |
| 28                   | Chevallier Street                            | Roadside  | 615194                        | 245292                         | NO2                     | No following<br>revocation of<br>AQMA 4 on<br>19/08/2021 | 2.6                                                          | 1.9                                                          | No                                                       | 2.5                   |

| Diffusion<br>Tube ID | Site Name      | Site Type | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA?                                   | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|----------------|-----------|-------------------------------|--------------------------------|-------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 29                   | Fore Hamlet    | Roadside  | 617118                        | 244074                         | NO2                     | No                                                           | 0.0                                                          | 2.2                                                          | No                                                       | 2.7                   |
| 30                   | Fore Street    | Roadside  | 616939                        | 244114                         | NO2                     | Yes - AQMA<br>3 from<br>19/08/2021<br>following<br>amendment | 1.4                                                          | 2.7                                                          | No                                                       | 2.5                   |
| 31                   | Star Lane      | Roadside  | 616332                        | 244149                         | NO2                     | No                                                           | N/A                                                          | 2.4                                                          | No                                                       | 2.3                   |
| 32                   | Spring Road    | Roadside  | 617398                        | 244573                         | NO2                     | No                                                           | 2.9                                                          | 2.0                                                          | No                                                       | 2.5                   |
| 33                   | Key Street     | Roadside  | 616666                        | 244114                         | NO2                     | Yes - AQMA<br>3                                              | 0.0                                                          | 2.0                                                          | No                                                       | 2.5                   |
| 34                   | College Street | Roadside  | 616467                        | 244072                         | NO2                     | Yes - AQMA<br>3                                              | N/A                                                          | 1.8                                                          | No                                                       | 2.5                   |
| 35                   | Cobden Place   | Roadside  | 616746                        | 244696                         | NO2                     | No                                                           | 0.0                                                          | 1.1                                                          | No                                                       | 2.4                   |
| 36                   | Valley Road    | Roadside  | 616820                        | 246158                         | NO2                     | No                                                           | 15.0                                                         | 2.2                                                          | No                                                       | 2.5                   |
| 37                   | Star Lane      | Roadside  | 616845                        | 244252                         | NO2                     | No                                                           | 0.0                                                          | 1.1                                                          | No                                                       | 2.5                   |
| 38                   | Civic Drive    | Kerbside  | 615904                        | 244805                         | NO2                     | No                                                           | 6.3                                                          | 0.9                                                          | No                                                       | 2.5                   |
| 39                   | Star Lane      | Kerbside  | 616712                        | 244228                         | NO2                     | Yes -<br>AQMA 3                                              | 1.3                                                          | 0.8                                                          | No                                                       | 2.4                   |
| 40                   | Norwich Road   | Roadside  | 615460                        | 245148                         | NO2                     | No                                                           | 5.7                                                          | 2.8                                                          | No                                                       | 2.4                   |

| Diffusion<br>Tube ID | Site Name                        | Site Type | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA?                               | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|----------------------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 41                   | Bramford Road /<br>Norwich Road  | Roadside  | 615564                        | 245010                         | NO2                     | No                                                       | 0.5                                                          | 1.3                                                          | No                                                       | 2.5                   |
| 42                   | Norwich Road                     | Roadside  | 615744                        | 244901                         | NO2                     | Yes - AQMA<br>5                                          | 0.0                                                          | 2.3                                                          | No                                                       | 2.5                   |
| 43                   | Bramford Road /<br>Yarmouth Road | Roadside  | 615109                        | 245200                         | NO2                     | No following<br>revocation of<br>AQMA 4 on<br>19/08/2021 | 0.6                                                          | 3.6                                                          | No                                                       | 2.4                   |
| 44                   | Bramford Road                    | Roadside  | 615052                        | 245237                         | NO2                     | No                                                       | 4.8                                                          | 1.6                                                          | No                                                       | 2.4                   |
| 45, 46,<br>47        | Chevallier Street                | Roadside  | 615261                        | 245350                         | NO2                     | No following<br>amendment<br>to AQMA 1<br>on 19/08/21    | 2.5                                                          | 4.2                                                          | Yes                                                      | 1.2                   |
| 48                   | Valley Road                      | Roadside  | 615425                        | 245486                         | NO2                     | No                                                       | 7.4                                                          | 2.6                                                          | No                                                       | 2.7                   |
| 49                   | St Matthew's<br>Street           | Roadside  | 615792                        | 244876                         | NO2                     | Yes - AQMA<br>5                                          | 0.0                                                          | 1.9                                                          | No                                                       | 2.6                   |
| 50                   | Barrack Lane                     | Roadside  | 615773                        | 244890                         | NO2                     | Yes - AQMA<br>5                                          | 1.5                                                          | 1.4                                                          | No                                                       | 2.4                   |
| 51                   | St Matthew's<br>Street           | Kerbside  | 615769                        | 244866                         | NO2                     | Yes - AQMA<br>5                                          | 4.5                                                          | 0.9                                                          | No                                                       | 2.6                   |
| 52                   | St Matthew's<br>Street           | Roadside  | 615826                        | 244871                         | NO2                     | Yes - AQMA<br>5                                          | 0.0                                                          | 2.2                                                          | No                                                       | 2.5                   |
| 53                   | St Matthew's<br>Street           | Roadside  | 615820                        | 244858                         | NO2                     | Yes - AQMA<br>5                                          | 0.0                                                          | 2.2                                                          | No                                                       | 2.3                   |

| Diffusion<br>Tube ID | Site Name                            | Site Type | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA? | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|--------------------------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 54                   | St Matthew's<br>Street<br>Roundabout | Roadside  | 615893                        | 244855                         | NO2                     | No                         | 10.4                                                         | 1.3                                                          | No                                                       | 2.5                   |
| 55                   | Berners Street                       | Roadside  | 615917                        | 244898                         | NO2                     | No                         | 0.0                                                          | 2.3                                                          | No                                                       | 2.5                   |
| 56                   | Berners Street                       | Roadside  | 615931                        | 244911                         | NO2                     | No                         | 0.0                                                          | 1.5                                                          | No                                                       | 2.5                   |
| 57                   | Berners Street                       | Roadside  | 615941                        | 244981                         | NO2                     | No                         | 0.0                                                          | 8.1                                                          | No                                                       | 2.5                   |
| 58                   | Berners Street                       | Kerbside  | 615978                        | 245042                         | NO2                     | No                         | 7.7                                                          | 0.5                                                          | No                                                       | 2.5                   |
| 59                   | St Matthew's<br>Street<br>Roundabout | Roadside  | 615926                        | 244837                         | NO2                     | No                         | N/A                                                          | 2.9                                                          | No                                                       | 2.5                   |
| 60                   | Colchester Road                      | Roadside  | 617438                        | 246168                         | NO2                     | No                         | 14.5                                                         | 3.1                                                          | No                                                       | 2.4                   |
| 61                   | Valley Road                          | Roadside  | 616099                        | 246105                         | NO2                     | No                         | 19.5                                                         | 2.4                                                          | No                                                       | 2.5                   |
| 62                   | St Matthew's<br>Street               | Roadside  | 615935                        | 244803                         | NO2                     | No                         | 2.9                                                          | 1.8                                                          | No                                                       | 2.6                   |
| 63                   | St Matthew's<br>Street               | Roadside  | 615950                        | 244790                         | NO2                     | No                         | 0.0                                                          | 3.3                                                          | No                                                       | 2.4                   |
| 64, 65               | Norwich Road                         | Roadside  | 615688                        | 244939                         | NO2                     | Yes - AQMA<br>5            | 0.4                                                          | 1.3                                                          | No                                                       | 2.4                   |
| 66                   | Woodbridge Road                      | Roadside  | 616807                        | 244669                         | NO2                     | Yes - AQMA<br>2            | 0.0                                                          | 3.4                                                          | No                                                       | 2.4                   |

| Diffusion<br>Tube ID | Site Name         | Site Type | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA? | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|-------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 67                   | Blanche Street    | Roadside  | 616890                        | 244676                         | NO2                     | No                         | 6.3                                                          | 1.4                                                          | No                                                       | 2.6                   |
| 68                   | Woodbridge Road   | Roadside  | 616905                        | 244657                         | NO2                     | Yes - AQMA<br>2            | 0.0                                                          | 3.4                                                          | No                                                       | 2.5                   |
| 69                   | Argyle Street     | Roadside  | 616978                        | 244590                         | NO2                     | No                         | 0.0                                                          | 4.8                                                          | No                                                       | 2.5                   |
| 70                   | Argyle Street     | Roadside  | 616965                        | 244583                         | NO2                     | No                         | N/A                                                          | 1.6                                                          | No                                                       | 2.3                   |
| 71                   | St Helen's Street | Roadside  | 617032                        | 244537                         | NO2                     | No                         | 0.0                                                          | 14.5                                                         | No                                                       | 2.5                   |
| 72                   | St Helen's Street | Roadside  | 617123                        | 244535                         | NO2                     | Yes - AQMA<br>2            | 0.0                                                          | 1.9                                                          | No                                                       | 2.6                   |
| 73                   | Regent Street     | Kerbside  | 617124                        | 244517                         | NO2                     | No                         | 0.0                                                          | 1.0                                                          | No                                                       | 2.6                   |
| 74                   | Grimwade Street   | Roadside  | 616953                        | 244443                         | NO2                     | No                         | N/A                                                          | 2.1                                                          | No                                                       | 2.5                   |
| 75                   | Grimwade Street   | Roadside  | 616927                        | 244395                         | NO2                     | No                         | 0.0                                                          | 7.0                                                          | No                                                       | 2.2                   |
| 76                   | St Helen's Street | Roadside  | 616951                        | 244521                         | NO2                     | Yes - AQMA<br>2            | 0.0                                                          | 3.0                                                          | No                                                       | 2.5                   |
| 77                   | St Helen's Street | Roadside  | 616902                        | 244542                         | NO2                     | No                         | 0.0                                                          | 4.7                                                          | No                                                       | 2.5                   |
| 78                   | Orchard Street    | Roadside  | 616870                        | 244586                         | NO2                     | No                         | 1.5                                                          | 1.4                                                          | No                                                       | 2.6                   |
| 79                   | Woodbridge Road   | Kerbside  | 617052                        | 244677                         | NO2                     | No                         | N/A                                                          | 0.5                                                          | No                                                       | 2.4                   |

| Diffusion<br>Tube ID | Site Name                       | Site Type | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA? | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|---------------------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 80, 81,<br>82        | St Helen's Street               | Kerbside  | 616821                        | 244546                         | NO2                     | Yes - AQMA<br>2            | N/A                                                          | 1.0                                                          | No                                                       | 2.4                   |
| 83                   | Bond Street                     | Roadside  | 616792                        | 244498                         | NO2                     | No                         | 1.6                                                          | 1.6                                                          | No                                                       | 2.2                   |
| 84                   | Carr Street /<br>Major's Corner | Roadside  | 616702                        | 244601                         | NO2                     | No                         | N/A                                                          | 4.4                                                          | No                                                       | 2.5                   |
| 85                   | Old Foundry<br>Road             | Roadside  | 616681                        | 244623                         | NO2                     | No                         | 0.2                                                          | 1.3                                                          | No                                                       | 2.5                   |
| 86                   | Upper Orwell<br>Street          | Kerbside  | 616727                        | 244566                         | NO2                     | No                         | 0.0                                                          | 0.9                                                          | No                                                       | 2.2                   |
| 87                   | Northgate Street                | Roadside  | 616481                        | 244725                         | NO2                     | No                         | 0.0                                                          | 1.8                                                          | No                                                       | 2.3                   |
| 88                   | Stoke Street                    | Roadside  | 616307                        | 243875                         | NO2                     | No                         | 0.0                                                          | 1.8                                                          | No                                                       | 2.5                   |
| 89                   | Hadleigh Road                   | Roadside  | 614816                        | 244585                         | NO2                     | No                         | 4.2                                                          | 2.8                                                          | No                                                       | 2.5                   |
| 90                   | Hadleigh Road                   | Roadside  | 614893                        | 244558                         | NO2                     | No                         | 0.0                                                          | 12.1                                                         | No                                                       | 2.4                   |
| 91                   | London Road                     | Roadside  | 615195                        | 244621                         | NO2                     | No                         | 0.0                                                          | 7.2                                                          | No                                                       | 2.4                   |
| 92                   | Ipswich Hospital                | Other     | 619407                        | 244712                         | NO2                     | No                         | 3.8                                                          | N/A                                                          | No                                                       | 2.1                   |
| 93                   | Grove Lane                      | Roadside  | 617360                        | 244536                         | NO2                     | No                         | 0.0                                                          | 4.8                                                          | No                                                       | 2.4                   |
| 94                   | Fore Hamlet                     | Roadside  | 617363                        | 243887                         | NO2                     | No                         | 0.0                                                          | 7.5                                                          | No                                                       | 2.7                   |

| Diffusion<br>Tube ID | Site Name                           | Site Type | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA? | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co-<br>located with<br>a<br>Continuous<br>Analyser? | Tube<br>Height<br>(m) |
|----------------------|-------------------------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| 95                   | Vernon Street                       | Roadside  | 616415                        | 243776                         | NO2                     | No                         | 0.0                                                          | 6.1                                                          | No                                                       | 2.4                   |
| 96                   | Crown Street                        | Kerbside  | 616279                        | 244807                         | NO2                     | Yes - AQMA<br>2            | 2.2                                                          | 0.9                                                          | No                                                       | 2.4                   |
| 97                   | Crown<br>Street/Northgate<br>Street | Kerbside  | 616474                        | 244795                         | NO2                     | Yes - AQMA<br>2            | 5.8                                                          | 2.9                                                          | No                                                       | 2.2                   |
| 98                   | Fore Street                         | Kerbside  | 617037                        | 244085                         | NO2                     | No                         | 0.0                                                          | 2.3                                                          | No                                                       | 2.4                   |
| 99, 100,<br>101      | St Matthew's<br>Street              | Roadside  | 615870                        | 244858                         | NO2                     | No                         | 11.9                                                         | 4.2                                                          | Yes                                                      | 1.4                   |

## Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable.

#### Table A.3 – Annual Mean NO<sub>2</sub> Monitoring Results: Automatic Monitoring (µg/m<sup>3</sup>)

| Site ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017 | 2018 | 2019 | 2020 | 2021 |
|---------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|-----------------------------------------------|------|------|------|------|------|
| IPS3    | 615261                        | 245350                         | Roadside  | 98.24                                                             | 98.24                                         | 29   | 28   | 26   | 20.7 | 23   |
| IPS04   | 615870                        | 244858                         | Roadside  | 99.33                                                             | 99.33                                         | N/A  | N/A  | 37   | 26.3 | 28   |

☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG16.

Reported concentrations are those at the location of the monitoring site (annualised, as required), i.e. prior to any fall-off with distance correction.

#### Notes:

The annual mean concentrations are presented as  $\mu g/m^3$ .

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

All means have been "annualised" as per LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

| Table A.4 – Annual Mean NG | 2 Monitoring Results: N | Ion-Automatic Monitoring (µg/m <sup>3</sup> ) |
|----------------------------|-------------------------|-----------------------------------------------|
|----------------------------|-------------------------|-----------------------------------------------|

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type  | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017       | 2018       | 2019       | 2020       | 2021 |
|----------------------|-------------------------------|--------------------------------|------------|-------------------------------------------------------------------|-----------------------------------------------|------------|------------|------------|------------|------|
| 1                    | 615992                        | 244412                         | Roadside   | 100                                                               | 100.0                                         | 27.0       | 26.0       | 24.0       | 18.5       | 19.3 |
| 2                    | 615144                        | 245245                         | Roadside   | 100                                                               | 100.0                                         | 40.0       | 42.0       | 38.0       | 30.1       | 30.9 |
| 3                    | 617070                        | 244039                         | Kerbside   | 100                                                               | 100.0                                         | 26.0       | 27.0       | 26.0       | 19.5       | 20.9 |
| 4                    | 615620                        | 245000                         | Roadside   | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 31.0       | 24.5       | 26.3 |
| 5                    | 616887                        | 244128                         | Roadside   | 100                                                               | 100.0                                         | 44.0       | 42.0       | 39.0       | 32.1       | 33.3 |
| 6                    | 617288                        | 244429                         | Background | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 12.1 |
| 7                    | 615007                        | 245239                         | Roadside   | 100                                                               | 100.0                                         | 32.0       | 31.0       | 30.0       | 23.4       | 25.4 |
| 8, 9, 10             | 615125                        | 245209                         | Roadside   | 100                                                               | 100.0                                         | 35.0       | 34.0       | 32.0       | 25.4       | 29.1 |
| 13                   | 615117                        | 245305                         | Roadside   | 100                                                               | 100.0                                         | 25.0       | 24.0       | 23.0       | 18.3       | 20.4 |
| 14                   | 615285                        | 245393                         | Roadside   | 100                                                               | 100.0                                         | 45.0       | 45.0       | 41.0       | 32.1       | 34.2 |
| 15                   | 616282                        | 244643                         | Background | 100                                                               | 100.0                                         | 24.0       | 26.0       | 22.0       | 16.7       | 17.8 |
| 16                   | 615362                        | 245437                         | Roadside   | 100                                                               | 100.0                                         | 37.0       | 35.0       | 33.0       | 25.6       | 27.3 |
| 17                   | 616993                        | 244659                         | Roadside   | 100                                                               | 100.0                                         | 46.0       | 46.0       | 42.0       | 32.9       | 35.2 |

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017       | 2018       | 2019 | 2020 | 2021 |
|----------------------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|-----------------------------------------------|------------|------------|------|------|------|
| 18                   | 615090                        | 245178                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 41.0 | 33.4 | 36.3 |
| 11, 12,<br>19        | 616593                        | 244753                         | Roadside  | 100                                                               | 100.0                                         | 50.0       | 48.0       | 47.0 | 36.7 | 41.9 |
| 20                   | 616458                        | 244829                         | Roadside  | 100                                                               | 100.0                                         | 34.0       | 33.0       | 29.0 | 21.9 | 24.2 |
| 21                   | 616494                        | 244807                         | Roadside  | 91.8                                                              | 91.8                                          | 37.0       | 38.0       | 34.0 | 25.7 | 27.2 |
| 22                   | 616489                        | 244785                         | Roadside  | 100                                                               | 100.0                                         | 36.0       | 39.0       | 34.0 | 23.6 | 25.4 |
| 23                   | 616645                        | 244784                         | Roadside  | 100                                                               | 100.0                                         | 23.0       | 21.0       | 21.0 | 15.9 | 17.3 |
| 24                   | 616663                        | 244692                         | Roadside  | 100                                                               | 100.0                                         | 37.0       | 40.0       | 38.0 | 30.3 | 34.2 |
| 25                   | 616753                        | 244582                         | Roadside  | 100                                                               | 100.0                                         | 38.0       | 39.0       | 36.0 | 29.6 | 34.8 |
| 26                   | 616971                        | 244511                         | Roadside  | 91.8                                                              | 91.8                                          | 32.0       | 36.0       | 34.0 | 25.4 | 30.0 |
| 27                   | 616965                        | 244546                         | Roadside  | 100                                                               | 100.0                                         | 42.0       | 43.0       | 38.0 | 29.0 | 31.6 |
| 28                   | 615194                        | 245292                         | Roadside  | 100                                                               | 100.0                                         | 36.0       | 38.0       | 35.0 | 26.4 | 29.6 |
| 29                   | 617118                        | 244074                         | Roadside  | 100                                                               | 100.0                                         | 33.0       | 32.0       | 31.0 | 24.0 | 27.6 |
| 30                   | 616939                        | 244114                         | Roadside  | 100                                                               | 100.0                                         | 51.0       | 49.0       | 46.0 | 34.7 | 37.5 |
| 31                   | 616332                        | 244149                         | Roadside  | 92.9                                                              | 92.9                                          | 43.0       | 45.0       | 44.0 | 33.8 | 38.6 |

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017       | 2018       | 2019 | 2020 | 2021 |
|----------------------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|-----------------------------------------------|------------|------------|------|------|------|
| 32                   | 617398                        | 244573                         | Roadside  | 100                                                               | 100.0                                         | 34.0       | 31.0       | 30.0 | 23.3 | 25.2 |
| 33                   | 616666                        | 244114                         | Roadside  | 100                                                               | 100.0                                         | 33.0       | 34.0       | 32.0 | 23.4 | 27.7 |
| 34                   | 616467                        | 244072                         | Roadside  | 100                                                               | 100.0                                         | 40.0       | 39.0       | 33.0 | 25.0 | 27.7 |
| 35                   | 616746                        | 244696                         | Roadside  | 100                                                               | 100.0                                         | 27.0       | 27.0       | 26.0 | 19.6 | 21.2 |
| 36                   | 616820                        | 246158                         | Roadside  | 100                                                               | 100.0                                         | 33.0       | 31.0       | 31.0 | 22.8 | 22.6 |
| 37                   | 616845                        | 244252                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 31.0 | 22.4 | 25.2 |
| 38                   | 615904                        | 244805                         | Kerbside  | 100                                                               | 100.0                                         | 34.0       | 35.0       | 33.0 | 25.1 | 27.7 |
| 39                   | 616712                        | 244228                         | Kerbside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 41.0 | 30.5 | 36.5 |
| 40                   | 615460                        | 245148                         | Roadside  | 100                                                               | 100.0                                         | 31.0       | 30.0       | 27.0 | 20.1 | 23.8 |
| 41                   | 615564                        | 245010                         | Roadside  | 100                                                               | 100.0                                         | 35.0       | 37.0       | 36.0 | 27.2 | 29.2 |
| 42                   | 615744                        | 244901                         | Roadside  | 100                                                               | 100.0                                         | 33.0       | 38.0       | 37.0 | 29.1 | 35.1 |
| 43                   | 615109                        | 245200                         | Roadside  | 91.2                                                              | 91.2                                          | 39.0       | 38.0       | 36.0 | 28.8 | 30.9 |
| 44                   | 615052                        | 245237                         | Roadside  | 100                                                               | 100.0                                         | 38.0       | 38.0       | 34.0 | 26.1 | 30.4 |
| 45, 46,<br>47        | 615261                        | 245350                         | Roadside  | 100                                                               | 100.0                                         | 27.0       | 28.0       | 26.0 | 19.9 | 22.3 |

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017 | 2018 | 2019 | 2020 | 2021 |
|----------------------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|-----------------------------------------------|------|------|------|------|------|
| 48                   | 615425                        | 245486                         | Roadside  | 100                                                               | 100.0                                         | 29.0 | 27.0 | 25.0 | 19.0 | 20.7 |
| 49                   | 615792                        | 244876                         | Roadside  | 100                                                               | 100.0                                         | 41.0 | 46.0 | 42.0 | 32.0 | 37.5 |
| 50                   | 615773                        | 244890                         | Roadside  | 100                                                               | 100.0                                         | 28.0 | 27.0 | 24.0 | 19.2 | 20.2 |
| 51                   | 615769                        | 244866                         | Kerbside  | 100                                                               | 100.0                                         | 37.0 | 42.0 | 37.0 | 26.5 | 30.3 |
| 52                   | 615826                        | 244871                         | Roadside  | 100                                                               | 100.0                                         | 47.0 | 46.0 | 45.0 | 36.4 | 40.1 |
| 53                   | 615820                        | 244858                         | Roadside  | 100                                                               | 100.0                                         | 42.0 | 46.0 | 44.0 | 33.8 | 35.8 |
| 54                   | 615893                        | 244855                         | Roadside  | 100                                                               | 100.0                                         | 36.0 | 37.0 | 36.0 | 27.5 | 29.2 |
| 55                   | 615917                        | 244898                         | Roadside  | 100                                                               | 100.0                                         | 28.0 | 29.0 | 27.0 | 20.1 | 23.2 |
| 56                   | 615931                        | 244911                         | Roadside  | 92.6                                                              | 92.6                                          | 29.0 | 29.0 | 27.0 | 20.9 | 24.0 |
| 57                   | 615941                        | 244981                         | Roadside  | 100                                                               | 100.0                                         | 27.0 | 25.0 | 24.0 | 17.4 | 18.2 |
| 58                   | 615978                        | 245042                         | Kerbside  | 100                                                               | 100.0                                         | 25.0 | 25.0 | 24.0 | 17.4 | 19.1 |
| 59                   | 615926                        | 244837                         | Roadside  | 100                                                               | 100.0                                         | 33.0 | 32.0 | 32.0 | 24.2 | 25.4 |
| 60                   | 617438                        | 246168                         | Roadside  | 100                                                               | 100.0                                         | 31.0 | 29.0 | 28.0 | 20.5 | 21.8 |
| 61                   | 616099                        | 246105                         | Roadside  | 100                                                               | 100.0                                         | 42.0 | 40.0 | 38.0 | 28.3 | 30.2 |

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017       | 2018       | 2019       | 2020       | 2021 |
|----------------------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|-----------------------------------------------|------------|------------|------------|------------|------|
| 62                   | 615935                        | 244803                         | Roadside  | 100                                                               | 100.0                                         | 37.0       | 36.0       | 34.0       | 26.6       | 28.6 |
| 63                   | 615950                        | 244790                         | Roadside  | 100                                                               | 100.0                                         | 37.0       | 36.0       | 37.0       | 27.0       | 30.6 |
| 64, 65               | 615688                        | 244939                         | Roadside  | 100                                                               | 100.0                                         | 56.0       | 55.0       | 51.0       | 40.3       | 41.9 |
| 66                   | 616807                        | 244669                         | Roadside  | 100                                                               | 100.0                                         | 40.0       | 42.0       | 39.0       | 31.0       | 33.3 |
| 67                   | 616890                        | 244676                         | Roadside  | 100                                                               | 100.0                                         | 26.0       | 28.0       | 27.0       | 21.3       | 23.2 |
| 68                   | 616905                        | 244657                         | Roadside  | 100                                                               | 100.0                                         | 45.0       | 44.0       | 43.0       | 33.2       | 36.2 |
| 69                   | 616978                        | 244590                         | Roadside  | 100                                                               | 100.0                                         | 26.0       | 27.0       | 26.0       | 20.5       | 22.2 |
| 70                   | 616965                        | 244583                         | Roadside  | 100                                                               | 100.0                                         | 36.0       | 38.0       | 36.0       | 25.8       | 28.0 |
| 71                   | 617032                        | 244537                         | Roadside  | 100                                                               | 100.0                                         | 24.0       | 25.0       | 24.0       | 17.3       | 20.6 |
| 72                   | 617123                        | 244535                         | Roadside  | 100                                                               | 100.0                                         | 38.0       | 38.0       | 35.0       | 26.0       | 30.3 |
| 73                   | 617124                        | 244517                         | Kerbside  | 100                                                               | 100.0                                         | 23.0       | 23.0       | 22.0       | 16.0       | 17.4 |
| 74                   | 616953                        | 244443                         | Roadside  | 91.8                                                              | 91.8                                          | 27.0       | 27.0       | 26.0       | 20.1       | 22.1 |
| 75                   | 616927                        | 244395                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 18.9 |
| 76                   | 616951                        | 244521                         | Roadside  | 100                                                               | 100.0                                         | 36.0       | 37.0       | 36.0       | 28.0       | 31.0 |

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017       | 2018       | 2019       | 2020       | 2021 |
|----------------------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|-----------------------------------------------|------------|------------|------------|------------|------|
| 77                   | 616902                        | 244542                         | Roadside  | 100                                                               | 100.0                                         | 28.0       | 29.0       | 26.0       | 20.2       | 23.1 |
| 78                   | 616870                        | 244586                         | Roadside  | 100                                                               | 100.0                                         | 25.0       | 24.0       | 23.0       | 17.6       | 20.1 |
| 79                   | 617052                        | 244677                         | Kerbside  | 100                                                               | 100.0                                         | 36.0       | 36.0       | 35.0       | 27.8       | 31.1 |
| 80, 81,<br>82        | 616821                        | 244546                         | Kerbside  | 100                                                               | 100.0                                         | 36.0       | 38.0       | 36.0       | 27.4       | 30.1 |
| 83                   | 616792                        | 244498                         | Roadside  | 100                                                               | 100.0                                         | 29.0       | 31.0       | 29.0       | 21.8       | 25.9 |
| 84                   | 616702                        | 244601                         | Roadside  | 100                                                               | 100.0                                         | 25.0       | 26.0       | 24.0       | 18.0       | 20.1 |
| 85                   | 616681                        | 244623                         | Roadside  | 100                                                               | 100.0                                         | 31.0       | 32.0       | 30.0       | 23.9       | 26.4 |
| 86                   | 616727                        | 244566                         | Kerbside  | 83.8                                                              | 83.8                                          | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 19.9       | 22.7 |
| 87                   | 616481                        | 244725                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 22.3       | 21.3 |
| 88                   | 616307                        | 243875                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 28.4       | 32.8 |
| 89                   | 614816                        | 244585                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 21.8       | 24.0 |
| 90                   | 614893                        | 244558                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 20.1       | 21.1 |
| 91                   | 615195                        | 244621                         | Roadside  | 91.2                                                              | 91.2                                          | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 19.4       | 21.6 |
| 92                   | 619407                        | 244712                         | Other     | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 14.0 |

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017       | 2018       | 2019       | 2020       | 2021 |
|----------------------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|-----------------------------------------------|------------|------------|------------|------------|------|
| 93                   | 617360                        | 244536                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 32.0       | 24.2       | 25.8 |
| 94                   | 617363                        | 243887                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 26.0       | 20.6       | 20.6 |
| 95                   | 616415                        | 243776                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 24.0       | 17.4       | 19.8 |
| 96                   | 616279                        | 244807                         | Kerbside  | 91.2                                                              | 91.2                                          | <u>N/A</u> | <u>N/A</u> | 42.0       | 30.5       | 32.9 |
| 97                   | 616474                        | 244795                         | Kerbside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 32.2 |
| 98                   | 617037                        | 244085                         | Kerbside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | <u>N/A</u> | 30.7 |
| 99, 100,<br>101      | 615870                        | 244858                         | Roadside  | 100                                                               | 100.0                                         | <u>N/A</u> | <u>N/A</u> | 41.0       | 26.8       | 29.6 |

Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG16.

☑ Diffusion tube data has been bias adjusted.

Reported concentrations are those at the location of the monitoring site (bias adjusted and annualised, as required), i.e. prior to any fall-off with distance correction.

#### Notes:

The annual mean concentrations are presented as  $\mu g/m^3$ .

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

 $NO_2$  annual means exceeding  $60\mu g/m^3$ , indicating a potential exceedance of the  $NO_2$  1-hour mean objective are shown in **bold and underlined**.

Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

















### Figure A.5 - Trends in Annual Mean NO<sub>2</sub> Concentrations in AQMA No.5







| Site ID | X OS<br>Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data<br>Capture 2021<br>(%) <sup>(2)</sup> | 2017 | 2018 | 2019   | 2020 | 2021 |
|---------|-------------------------------|--------------------------------|-----------|-------------------------------------------------------------------|--------------------------------------------------|------|------|--------|------|------|
| IPS3    | 615261                        | 245350                         | Roadside  | 98.24                                                             | 98.24                                            | 0    | 0    | 0      | 0    | 0    |
| IPS04   | 615870                        | 244858                         | Roadside  | 99.33                                                             | 99.33                                            | N/A  | N/A  | 0(117) | 0    | 0    |

#### Table A.5 – 1-Hour Mean NO<sub>2</sub> Monitoring Results, Number of 1-Hour Means > 200µg/m<sup>3</sup>

#### Notes:

Results are presented as the number of 1-hour periods where concentrations greater than 200µg/m<sup>3</sup> have been recorded.

Exceedances of the NO<sub>2</sub> 1-hour mean objective (200µg/m<sup>3</sup> not to be exceeded more than 18 times/year) are shown in **bold**.

If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

## Appendix B: Full Monthly Diffusion Tube Results for 2021

| DT ID | X OS<br>Grid Ref<br>(Easting) | Y OS<br>Grid Ref<br>(Easting) | Jan  | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Oct  | Νον  | Dec  | Annual Mean:<br>Raw Data | Annual Mean:<br>Annualised and<br>Bias Adjusted<br>(0.78) | Annual M<br>Distan<br>Correcte<br>Neare<br>Expos |
|-------|-------------------------------|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|-----------------------------------------------------------|--------------------------------------------------|
| 1     | 615992                        | 244412                        | 33.0 | 23.8 | 27.7 | 14.9 | 21.2 | 19.3 | 19.4 | 15.0 | 29.9 | 29.0 | 32.5 | 31.8 | 24.8                     | 19.3                                                      | 17.0                                             |
| 2     | 615144                        | 245245                        | 37.3 | 41.2 | 40.3 | 35.6 | 41.3 | 35.2 | 38.8 | 33.4 | 52.2 | 39.7 | 40.7 | 40.8 | 39.7                     | 30.9                                                      | 28.5                                             |
| 3     | 617070                        | 244039                        | 31.7 | 26.2 | 26.6 | 21.1 | 23.1 | 22.6 | 23.3 | 17.8 | 32.3 | 34.0 | 29.6 | 33.3 | 26.8                     | 20.9                                                      | -                                                |
| 4     | 615620                        | 245000                        | 38.7 | 37.2 | 35.4 | 36.8 | 26.6 | 34.5 | 23.6 | 24.4 | 42.9 | 30.6 | 36.6 | 37.5 | 33.7                     | 26.3                                                      | -                                                |
| 5     | 616887                        | 244128                        | 46.9 | 41.5 | 43.5 | 34.2 | 44.5 | 41.2 | 39.7 | 34.2 | 51.6 | 49.1 | 45.2 | 42.1 | 42.8                     | 33.3                                                      | 32.2                                             |
| 6     | 617288                        | 244429                        | 21.5 | 18.2 | 18.9 | 14.5 | 13.3 | 11.9 | 10.8 | 8.6  | 18.2 | 17.2 | 20.6 | 12.8 | 15.5                     | 12.1                                                      |                                                  |
| 7     | 615007                        | 245239                        | 36.0 | 33.7 | 33.6 | 27.1 | 30.1 | 29.8 | 26.0 | 25.2 | 37.3 | 37.2 | 36.7 | 38.2 | 32.6                     | 25.4                                                      |                                                  |
| 8     | 615125                        | 245209                        | 43.0 | 40.1 | 41.1 | 40.8 | 35.4 | 35.9 | 32.0 | 27.5 | 42.7 | 38.6 | 38.5 | 38.0 | -                        | -                                                         |                                                  |
| 9     | 615125                        | 245209                        | 45.0 | 36.5 | 39.6 | 36.7 | 34.8 | 37.0 | 32.8 | 29.7 | 41.6 | 36.9 | 39.0 | 35.8 | -                        | -                                                         |                                                  |
| 10    | 615125                        | 245209                        | 35.6 | 39.2 | 38.3 | 34.3 | 36.0 | 32.8 | 31.3 | 31.9 | 44.7 | 36.5 | 46.0 | 39.5 | 37.4                     | 29.1                                                      | 25.0                                             |
| 11    | 616593                        | 244753                        | 62.5 | 54.6 | 50.9 | 37.4 | 51.9 | 47.4 | 45.9 | 40.7 | 61.2 | 64.2 | 70.3 | 62.7 | -                        | -                                                         | -                                                |
| 12    | 616593                        | 244753                        | 65.0 | 48.6 | 54.9 | 38.3 | 63.4 | 46.4 | 46.5 | 44.2 | 64.5 | 63.9 | 57.5 | 58.7 | -                        | -                                                         | -                                                |
| 13    | 615117                        | 245305                        | 34.2 | 30.5 | 28.3 | 21.8 | 22.7 | 18.1 | 19.7 | 18.7 | 29.6 | 27.3 | 30.9 | 32.1 | 26.2                     | 20.4                                                      | 18.4                                             |
| 14    | 615285                        | 245393                        | 45.0 | 37.3 | 42.9 | 40.1 | 39.4 | 46.3 | 37.5 | 40.0 | 51.5 | 45.5 | 52.7 | 49.0 | 43.9                     | 34.2                                                      | 33.5                                             |
| 15    | 616282                        | 244643                        | 32.0 | 25.2 | 23.8 | 18.7 | 18.7 | 15.0 | 14.6 | 15.9 | 21.9 | 27.4 | 30.2 | 31.4 | 22.9                     | 17.8                                                      | -                                                |
| 16    | 615362                        | 245437                        | 39.5 | 34.8 | 33.7 | 21.5 | 35.8 | 33.3 | 25.8 | 31.2 | 43.5 | 41.7 | 41.8 | 39.0 | 35.1                     | 27.3                                                      | 25.1                                             |
| 17    | 616993                        | 244659                        | 45.6 | 41.1 | 42.5 | 38.4 | 36.2 | 43.5 | 41.2 | 36.9 | 58.9 | 53.8 | 52.9 | 51.7 | 45.2                     | 35.2                                                      | 31.8                                             |
| 18    | 615090                        | 245178                        | 43.5 | 60.5 | 45.2 | 39.7 | 48.3 | 44.8 | 45.1 | 37.4 | 57.0 | 50.0 | 41.1 | 47.0 | 46.6                     | 36.3                                                      | -                                                |

## Table B.1 – NO<sub>2</sub> 2021 Diffusion Tube Results (µg/m<sup>3</sup>)

| ean:<br>e<br>I to<br>t<br>re | Comment                                                               |
|------------------------------|-----------------------------------------------------------------------|
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              | Triplicate Site with 8, 9 and 10 - Annual data provided for 10 only   |
|                              | Triplicate Site with 8, 9 and 10 - Annual data provided for 10 only   |
|                              | Triplicate Site with 8, 9 and 10 - Annual data provided for 10 only   |
|                              | Triplicate Site with 11, 12 and 19 - Annual data provided for 19 only |
|                              | Triplicate Site with 11, 12 and 19 - Annual data provided for 19 only |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |

| DT ID | X OS<br>Grid Ref<br>(Easting) | Y OS<br>Grid Ref<br>(Easting) | Jan  | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual Mean:<br>Raw Data | Annual Mean:<br>Annualised and<br>Bias Adjusted<br>(0.78) | Annual Mo<br>Distanc<br>Corrected<br>Neares<br>Exposu |
|-------|-------------------------------|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| 19    | 616593                        | 244753                        | 61.6 | 47.9 | 45.1 | 36.5 | 55.0 | 46.7 | 45.9 | 46.8 | 58.9 | 70.4 | 58.2 | 62.0 | 53.8                     | 41.9                                                      | -                                                     |
| 20    | 616458                        | 244829                        | 36.6 | 29.8 | 21.7 | 23.7 | 29.0 | 29.9 | 27.8 | 26.6 | 40.1 | 33.0 | 37.1 | 37.3 | 31.1                     | 24.2                                                      | 23.1                                                  |
| 21    | 616494                        | 244807                        | 23.5 | 36.7 | 38.9 | 37.5 | 36.0 |      | 30.1 | 29.5 | 43.4 | 36.7 | 30.7 | 41.5 | 35.0                     | 27.2                                                      | -                                                     |
| 22    | 616489                        | 244785                        | 30.0 | 33.7 | 30.2 | 28.5 | 31.1 | 33.2 | 28.2 | 21.8 | 41.0 | 36.8 | 37.9 | 38.6 | 32.6                     | 25.4                                                      | -                                                     |
| 23    | 616645                        | 244784                        | 26.2 | 23.1 | 20.5 | 14.8 | 20.3 | 20.0 | 15.4 | 17.4 | 26.3 | 26.8 | 27.2 | 29.2 | 22.3                     | 17.3                                                      | -                                                     |
| 24    | 616663                        | 244692                        | 45.7 | 47.1 | 39.3 | 30.1 | 41.2 | 43.5 | 35.6 | 36.5 | 51.3 | 52.9 | 53.3 | 50.5 | 43.9                     | 34.2                                                      | -                                                     |
| 25    | 616753                        | 244582                        | 50.8 | 41.5 | 45.0 | 36.0 | 47.8 | 45.4 | 42.2 | 28.5 | 52.3 | 51.2 | 45.6 | 49.9 | 44.7                     | 34.8                                                      | 33.3                                                  |
| 26    | 616971                        | 244511                        | 41.8 | 39.6 | 38.6 | 38.6 | 30.7 |      | 30.5 | 31.1 | 47.8 | 39.5 | 44.7 | 40.9 | 38.5                     | 30.0                                                      |                                                       |
| 27    | 616965                        | 244546                        | 41.5 | 43.6 | 39.2 | 34.6 | 40.7 | 38.0 | 31.4 | 33.9 | 47.7 | 46.5 | 43.9 | 46.1 | 40.6                     | 31.6                                                      | 30.9                                                  |
| 28    | 615194                        | 245292                        | 37.9 | 48.2 | 38.0 | 32.6 | 37.2 | 33.0 | 28.3 | 29.6 | 47.8 | 42.1 | 39.2 | 42.1 | 38.0                     | 29.6                                                      | 26.5                                                  |
| 29    | 617118                        | 244074                        | 33.5 | 33.7 | 36.4 | 37.8 | 32.0 | 38.5 | 28.5 | 28.0 | 43.8 | 34.9 | 40.7 | 37.5 | 35.4                     | 27.6                                                      | -                                                     |
| 30    | 616939                        | 244114                        | 52.4 | 51.6 | 49.1 | 33.8 | 44.5 | 47.6 | 45.7 | 35.9 | 58.4 | 57.6 | 49.6 | 51.3 | 48.1                     | 37.5                                                      | 35.2                                                  |
| 31    | 616332                        | 244149                        | 56.9 | 48.2 | 51.5 | 40.0 | 46.2 | 45.3 | 39.9 | 38.1 | 60.5 | 59.5 |      | 59.8 | 49.6                     | 38.6                                                      | -                                                     |
| 32    | 617398                        | 244573                        | 39.4 | 32.3 | 36.8 | 23.9 | 32.2 | 27.1 | 27.6 | 12.8 | 38.1 | 39.7 | 40.5 | 38.5 | 32.4                     | 25.2                                                      | 22.7                                                  |
| 33    | 616666                        | 244114                        | 44.8 | 35.3 | 36.4 | 33.7 | 30.4 | 31.7 | 27.5 | 25.7 | 43.1 | 38.7 | 39.8 | 39.5 | 35.6                     | 27.7                                                      | -                                                     |
| 34    | 616467                        | 244072                        | 37.4 | 39.3 | 35.8 | 29.0 | 34.1 | 32.3 | 30.5 | 26.0 | 43.0 | 42.6 | 39.5 | 37.4 | 35.6                     | 27.7                                                      | -                                                     |
| 35    | 616746                        | 244696                        | 33.7 | 31.4 | 26.1 | 17.5 | 25.8 | 20.6 | 21.6 | 21.4 | 28.4 | 34.1 | 33.7 | 32.4 | 27.2                     | 21.2                                                      | -                                                     |
| 36    | 616820                        | 246158                        | 33.9 | 30.0 | 32.7 | 20.0 | 29.7 | 28.4 | 20.6 | 14.3 | 34.7 | 37.0 | 39.4 | 27.9 | 29.1                     | 22.6                                                      | 17.0                                                  |
| 37    | 616845                        | 244252                        | 34.6 | 31.3 | 35.6 | 31.7 | 31.5 | 33.2 | 27.7 | 18.7 | 36.9 | 36.6 | 33.2 | 37.5 | 32.4                     | 25.2                                                      | -                                                     |
| 38    | 615904                        | 244805                        | 32.8 | 37.9 | 34.9 | 27.0 | 36.7 | 33.6 | 32.8 | 27.1 | 45.7 | 41.6 | 39.1 | 38.6 | 35.7                     | 27.7                                                      | 22.0                                                  |
| 39    | 616712                        | 244228                        | 50.5 | 40.8 | 46.9 | 41.7 | 43.3 | 46.2 | 38.0 | 35.4 | 57.0 | 52.2 | 59.7 | 51.4 | 46.9                     | 36.5                                                      | 32.7                                                  |

## Ipswich Borough Council

| ean:<br>e<br>d to<br>t<br>re | Comment                                                               |
|------------------------------|-----------------------------------------------------------------------|
|                              | Triplicate Site with 11, 12 and 19 - Annual data provided for 19 only |
|                              |                                                                       |
|                              | Very low unusual tube reading for June so<br>did not include          |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              | Water in tube in June so did not include                              |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              | Missing tube in November                                              |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |

| DT ID | X OS<br>Grid Ref<br>(Easting) | Y OS<br>Grid Ref<br>(Easting) | Jan  | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual Mean:<br>Raw Data | Annual Mean:<br>Annualised and<br>Bias Adjusted<br>(0.78) | Annual Mo<br>Distanc<br>Corrected<br>Neares<br>Exposu |
|-------|-------------------------------|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| 40    | 615460                        | 245148                        | 39.7 | 30.9 | 32.0 | 27.3 | 25.5 | 27.7 | 23.7 | 19.3 | 35.6 | 31.8 | 39.0 | 33.9 | 30.5                     | 23.8                                                      | 20.8                                                  |
| 41    | 615564                        | 245010                        | 41.8 | 36.2 | 36.7 | 27.4 | 39.9 | 30.7 | 35.9 | 30.5 | 46.1 | 44.7 | 38.7 | 41.3 | 37.5                     | 29.2                                                      | 28.1                                                  |
| 42    | 615744                        | 244901                        | 46.9 | 42.8 | 45.3 | 49.8 | 41.9 | 47.4 | 43.1 | 34.6 | 55.7 | 40.6 | 49.7 | 44.0 | 45.2                     | 35.1                                                      | -                                                     |
| 43    | 615109                        | 245200                        | 42.1 | 43.2 | 45.0 | 36.0 | 34.0 | 36.7 |      | 32.6 | 46.6 | 33.3 | 42.6 | 44.0 | 39.6                     | 30.9                                                      | 30.2                                                  |
| 44    | 615052                        | 245237                        | 42.8 | 41.1 | 39.4 | 34.9 | 35.8 | 39.2 | 29.4 | 31.8 | 44.4 | 42.6 | 46.6 | 41.1 | 39.1                     | 30.4                                                      | 25.1                                                  |
| 45    | 615261                        | 245350                        | 31.9 | 31.0 | 29.6 | 26.2 | 27.4 | 29.9 | 23.9 | 22.0 | 34.8 | 31.3 | 29.9 | 30.1 | -                        | -                                                         | -                                                     |
| 46    | 615261                        | 245350                        | 31.1 | 33.7 | 30.7 | 24.2 | 25.6 | 28.8 | 24.6 | 22.8 | 35.1 | 27.8 | 29.8 | 31.4 | -                        | -                                                         | -                                                     |
| 47    | 615261                        | 245350                        | 30.7 | 31.6 | 28.3 | 25.9 | 26.2 | 28.3 | 22.1 | 16.1 | 35.9 | 31.4 | 32.2 | 30.7 | 28.7                     | 22.3                                                      | 21.1                                                  |
| 48    | 615425                        | 245486                        | 24.7 | 27.3 | 31.2 | 21.3 | 23.7 | 22.5 | 20.1 | 21.4 | 32.1 | 29.2 | 33.1 | 32.7 | 26.6                     | 20.7                                                      | 18.2                                                  |
| 49    | 615792                        | 244876                        | 50.7 | 52.9 | 44.6 | 49.9 | 49.7 | 49.3 | 44.6 | 34.4 | 62.2 | 47.0 | 46.5 | 46.0 | 48.2                     | 37.5                                                      | -                                                     |
| 50    | 615773                        | 244890                        | 34.9 | 29.0 | 26.9 | 16.6 | 23.6 | 20.1 | 18.2 | 17.8 | 28.5 | 33.3 | 32.1 | 31.1 | 26.0                     | 20.2                                                      | 19.2                                                  |
| 51    | 615769                        | 244866                        | 44.9 | 43.3 | 34.7 | 35.2 | 38.6 | 34.9 | 32.2 | 27.1 | 51.8 | 41.1 | 40.0 | 42.9 | 38.9                     | 30.3                                                      | 24.5                                                  |
| 52    | 615826                        | 244871                        | 58.7 | 46.0 | 57.6 | 48.9 | 49.0 | 50.1 | 39.1 | 43.1 | 62.0 | 53.8 | 57.9 | 52.9 | 51.6                     | 40.1                                                      |                                                       |
| 53    | 615820                        | 244858                        | 50.0 | 49.8 | 44.0 | 34.1 | 44.6 | 39.8 | 45.8 | 30.4 | 60.6 | 56.7 | 43.1 | 52.4 | 45.9                     | 35.8                                                      |                                                       |
| 54    | 615893                        | 244855                        | 42.4 | 43.3 | 38.5 | 28.6 | 24.3 | 32.3 | 32.4 | 28.5 | 46.0 | 47.8 | 44.6 | 42.1 | 37.6                     | 29.2                                                      | 22.1                                                  |
| 55    | 615917                        | 244898                        | 34.4 | 28.9 | 33.3 | 17.2 | 25.3 | 27.1 | 23.0 | 25.5 | 32.5 | 37.1 | 37.0 | 37.0 | 29.9                     | 23.2                                                      | -                                                     |
| 56    | 615931                        | 244911                        | 33.8 | 33.1 | 30.6 | 24.3 |      | 25.6 | 22.3 | 21.9 | 37.9 | 37.5 | 35.1 | 37.3 | 30.9                     | 24.0                                                      | -                                                     |
| 57    | 615941                        | 244981                        | 31.7 | 13.9 | 27.0 | 16.8 | 19.9 | 18.2 | 17.0 | 15.7 | 28.3 | 31.4 | 31.3 | 30.0 | 23.4                     | 18.2                                                      | -                                                     |
| 58    | 615978                        | 245042                        | 29.7 | 29.4 | 25.4 | 17.6 | 19.8 | 18.2 | 18.0 | 17.0 | 27.6 | 27.7 | 30.9 | 32.7 | 24.5                     | 19.1                                                      | 16.2                                                  |
| 59    | 615926                        | 244837                        | 41.3 | 35.0 | 31.5 | 27.4 | 28.8 | 28.3 | 27.7 | 25.2 | 40.1 | 37.5 | 29.8 | 39.2 | 32.7                     | 25.4                                                      |                                                       |
| 60    | 617438                        | 246168                        | 30.7 | 27.9 | 30.7 | 18.3 | 26.5 | 23.3 | 19.5 | 19.0 | 31.5 | 34.4 | 39.4 | 35.4 | 28.1                     | 21.8                                                      | 16.8                                                  |

## Ipswich Borough Council

| ean:<br>e<br>I to<br>t<br>re | Comment                                                               |
|------------------------------|-----------------------------------------------------------------------|
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              | Missing tube in July                                                  |
|                              |                                                                       |
|                              | Triplicate Site with 45, 46 and 47 - Annual data provided for 47 only |
|                              | Triplicate Site with 45, 46 and 47 - Annual data provided for 47 only |
|                              | Triplicate Site with 45, 46 and 47 - Annual data provided for 47 only |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              | Very low unusual tube reading for May so<br>did not include           |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |
|                              |                                                                       |

| DT ID | X OS<br>Grid Ref<br>(Easting) | Y OS<br>Grid Ref<br>(Easting) | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual Mean:<br>Raw Data | Annual Mean:<br>Annualised and<br>Bias Adjusted<br>(0.78) | Annual Me<br>Distanc<br>Corrected<br>Neares<br>Exposu |
|-------|-------------------------------|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| 61    | 616099                        | 246105                        | 40.7 | 40.1 | 41.5 | 30.2 | 36.2 | 38.5 | 33.8 | 32.2 | 47.2 | 42.1 | 40.7 | 43.2 | 38.9                     | 30.2                                                      | 19.9                                                  |
| 62    | 615935                        | 244803                        | 37.5 | 34.9 | 36.4 | 25.4 | 35.7 | 32.2 | 32.8 | 26.6 | 46.5 | 45.9 | 43.1 | 43.5 | 36.7                     | 28.6                                                      | 25.4                                                  |
| 63    | 615950                        | 244790                        | 42.3 | 36.7 | 38.1 | 27.3 | 42.4 | 35.2 | 32.6 | 27.9 | 50.5 | 48.2 | 45.7 | 44.4 | 39.3                     | 30.6                                                      | -                                                     |
| 64    | 615688                        | 244939                        | 64.7 | 55.6 | 59.0 | 41.7 | 43.9 | 45.5 | 44.8 | 44.3 | 62.9 | 64.0 | 50.7 | 53.9 | -                        | -                                                         | -                                                     |
| 65    | 615688                        | 244939                        | 68.2 | 56.0 |      | 36.0 | 53.2 | 49.6 | 48.1 | 26.8 | 64.4 | 65.4 | 68.3 | 65.7 | 53.8                     | 41.9                                                      | 40.5                                                  |
| 66    | 616807                        | 244669                        | 46.1 | 41.6 | 39.4 | 31.6 | 44.9 | 38.4 | 40.0 | 33.8 | 53.3 | 52.2 | 45.2 | 46.5 | 42.8                     | 33.3                                                      | -                                                     |
| 67    | 616890                        | 244676                        | 32.6 | 33.7 | 29.1 | 22.7 | 28.5 | 23.4 | 23.9 | 19.3 | 42.4 | 34.6 | 30.4 | 36.4 | 29.8                     | 23.2                                                      | 20.6                                                  |
| 68    | 616905                        | 244657                        | 53.4 | 46.4 | 43.4 | 38.3 | 47.5 | 45.1 | 37.9 | 34.3 | 58.2 | 48.4 | 54.3 | 50.7 | 46.5                     | 36.2                                                      | -                                                     |
| 69    | 616978                        | 244590                        | 33.6 | 34.4 | 25.8 | 28.9 | 24.4 | 23.4 | 21.4 | 20.8 | 34.3 | 30.7 | 32.0 | 32.8 | 28.5                     | 22.2                                                      | -                                                     |
| 70    | 616965                        | 244583                        | 47.5 | 33.9 | 39.9 | 31.7 | 35.2 | 28.4 | 25.4 | 25.7 | 38.9 | 41.0 | 43.3 | 41.0 | 36.0                     | 28.0                                                      | -                                                     |
| 71    | 617032                        | 244537                        | 29.5 | 25.4 | 28.7 | 24.4 | 22.2 | 23.9 | 19.4 | 21.7 | 29.4 | 30.5 | 34.4 | 28.8 | 26.5                     | 20.6                                                      | -                                                     |
| 72    | 617123                        | 244535                        | 45.9 | 33.8 | 36.6 | 38.6 | 33.6 | 39.1 | 29.6 | 31.7 | 47.6 | 41.9 | 44.5 | 44.1 | 38.9                     | 30.3                                                      | -                                                     |
| 73    | 617124                        | 244517                        | 29.5 | 25.5 | 21.0 | 19.2 | 18.2 | 17.8 | 16.6 | 15.1 | 26.9 | 24.0 | 27.1 | 28.0 | 22.4                     | 17.4                                                      | -                                                     |
| 74    | 616953                        | 244443                        | 31.6 | 31.6 | 29.9 | 26.3 | 24.4 |      | 22.6 | 18.7 | 29.0 | 32.7 | 32.6 | 33.0 | 28.4                     | 22.1                                                      | -                                                     |
| 75    | 616927                        | 244395                        | 27.2 | 27.5 | 25.4 | 13.5 | 20.6 | 20.5 | 17.5 | 23.8 | 27.8 | 29.2 | 29.0 | 28.8 | 24.2                     | 18.9                                                      | -                                                     |
| 76    | 616951                        | 244521                        | 44.3 | 42.2 | 38.9 | 35.4 | 36.6 | 37.7 | 34.2 | 25.6 | 48.5 | 48.1 | 40.9 | 46.3 | 39.9                     | 31.0                                                      | -                                                     |
| 77    | 616902                        | 244542                        | 37.3 | 29.2 | 30.3 | 31.3 | 27.3 | 27.1 | 21.5 | 17.2 | 35.0 | 31.2 | 35.7 | 33.6 | 29.7                     | 23.1                                                      | -                                                     |
| 78    | 616870                        | 244586                        | 34.6 | 29.3 | 27.9 | 19.2 | 21.8 | 19.2 | 17.3 | 16.4 | 27.6 | 32.1 | 32.3 | 32.6 | 25.9                     | 20.1                                                      | 19.5                                                  |
| 79    | 617052                        | 244677                        | 46.8 | 39.1 | 42.7 | 36.0 | 37.5 | 33.8 | 33.3 | 25.6 | 46.8 | 42.9 | 48.7 | 46.3 | 40.0                     | 31.1                                                      | -                                                     |
| 80    | 616821                        | 244546                        | 36.2 | 37.1 | 36.1 | 28.7 | 31.6 | 24.6 | 34.9 | 29.5 | 44.8 | 49.8 | 47.2 | 47.1 | -                        | -                                                         | -                                                     |
| 81    | 616821                        | 244546                        | 44.5 | 39.8 | 34.9 | 31.9 | 35.3 | 38.5 | 32.1 | 32.6 | 48.9 | 50.4 | 51.8 | 43.1 | -                        | -                                                         | -                                                     |

## Ipswich Borough Council

| ean:<br>e<br>I to<br>t<br>re | Comment                                                                                 |
|------------------------------|-----------------------------------------------------------------------------------------|
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              | Duplicate Site with 64 and 65 - Annual data<br>provided for 65 only                     |
|                              | Duplicate Site with 64 and 65 - Annual data provided for 65 only. Missing tube in March |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              | Missing tube in June                                                                    |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              |                                                                                         |
|                              | data provided for 82 only                                                               |
|                              | I riplicate Site with 80, 81 and 82 - Annual data provided for 82 only                  |
| DT ID | X OS<br>Grid Ref<br>(Easting) | Y OS<br>Grid Ref<br>(Easting) | Jan  | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual Mean:<br>Raw Data | Annual Mean:<br>Annualised and<br>Bias Adjusted<br>(0.78) | Annual Mean:<br>Distance<br>Corrected to<br>Nearest<br>Exposure | Comment                                                                  |
|-------|-------------------------------|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|
| 82    | 616821                        | 244546                        |      | 40.4 | 39.8 | 26.6 | 42.1 | 37.9 | 33.5 | 26.0 | 48.2 | 47.8 | 40.9 | 38.7 | 38.7                     | 30.1                                                      | -                                                               | Triplicate Site with 80, 81 and 82 - Annual data provided for 82 only    |
| 83    | 616792                        | 244498                        | 34.4 | 32.1 | 29.5 | 28.7 | 34.6 | 32.3 | 28.0 | 25.2 | 41.7 | 37.3 | 35.3 | 40.7 | 33.3                     | 25.9                                                      | 24.4                                                            |                                                                          |
| 84    | 616702                        | 244601                        | 31.4 | 26.7 | 26.2 | 25.6 | 21.7 | 21.6 | 19.3 | 18.7 | 32.6 | 28.9 | 27.2 | 30.2 | 25.8                     | 20.1                                                      |                                                                 |                                                                          |
| 85    | 616681                        | 244623                        | 36.1 | 35.3 | 33.2 | 23.2 | 34.1 | 30.1 | 26.2 | 27.5 | 40.6 | 41.6 | 40.8 | 38.2 | 33.9                     | 26.4                                                      | 26.1                                                            |                                                                          |
| 86    | 616727                        | 244566                        | 32.7 | 32.7 | 31.1 | 28.8 | 23.4 | 16.7 |      | 22.0 |      | 33.5 | 36.0 | 35.0 | 29.2                     | 22.7                                                      | -                                                               | Missing tube in July and September                                       |
| 87    | 616481                        | 244725                        | 25.3 | 37.1 | 20.9 | 23.9 | 27.2 | 24.5 | 21.8 | 19.4 | 33.2 | 32.8 | 28.5 | 33.2 | 27.3                     | 21.3                                                      | -                                                               |                                                                          |
| 88    | 616307                        | 243875                        | 43.9 | 36.9 | 49.0 | 39.0 | 30.3 | 43.4 | 32.9 | 35.8 | 46.8 | 48.2 | 54.6 | 45.5 | 42.2                     | 32.8                                                      | -                                                               |                                                                          |
| 89    | 614816                        | 244585                        | 28.0 | 37.4 | 30.1 | 27.1 | 28.0 | 30.7 | 28.9 | 19.8 | 38.7 | 37.5 | 30.3 | 34.0 | 30.9                     | 24.0                                                      | 20.9                                                            |                                                                          |
| 90    | 614893                        | 244558                        | 33.9 | 28.2 | 29.2 | 19.7 | 26.3 | 24.2 | 21.9 | 14.3 | 34.2 | 32.2 | 29.6 | 32.1 | 27.2                     | 21.1                                                      | -                                                               |                                                                          |
| 91    | 615195                        | 244621                        | 32.3 | 23.7 | 28.7 | 19.9 | 23.7 | 36.6 |      | 17.4 | 31.1 | 29.1 | 32.7 | 30.3 | 27.8                     | 21.6                                                      | -                                                               | Very low unusual tube reading for July so did not include                |
| 92    | 619407                        | 244712                        | 23.2 | 20.9 | 20.0 | 13.1 | 14.4 | 13.9 | 12.5 | 12.0 | 20.2 | 18.1 | 23.9 | 23.9 | 18.0                     | 14.0                                                      | -                                                               |                                                                          |
| 93    | 617360                        | 244536                        | 40.2 | 32.7 | 39.2 | 28.8 | 32.3 | 28.7 | 14.3 | 25.8 | 37.4 | 35.7 | 43.4 | 38.6 | 33.1                     | 25.8                                                      | -                                                               |                                                                          |
| 94    | 617363                        | 243887                        | 33.7 | 25.9 | 32.9 | 18.8 | 24.7 | 22.4 | 19.1 | 15.4 | 30.2 | 31.8 | 30.0 | 33.0 | 26.5                     | 20.6                                                      | -                                                               |                                                                          |
| 95    | 616415                        | 243776                        | 26.5 | 27.7 | 31.3 | 21.6 | 23.2 | 27.2 | 22.8 | 18.6 | 30.1 | 24.6 | 29.6 | 22.4 | 25.5                     | 19.8                                                      | -                                                               |                                                                          |
| 96    | 616279                        | 244807                        | 31.2 | 44.5 | 40.5 | 38.7 | 39.1 | 32.8 |      | 36.6 | 56.4 | 49.7 | 51.5 | 44.7 | 42.3                     | 32.9                                                      | 28.8                                                            | Missing tube in July                                                     |
| 97    | 616474                        | 244795                        | 41.0 | 46.3 | 43.9 | 33.2 | 42.6 | 38.2 | 37.6 | 33.0 | 51.9 | 44.3 | 38.9 | 45.1 | 41.3                     | 32.2                                                      | 27.7                                                            |                                                                          |
| 98    | 617037                        | 244085                        | 44.0 | 40.6 | 41.7 | 32.5 | 40.1 | 35.8 | 30.4 | 31.2 | 46.7 | 43.6 | 45.2 | 41.5 | 39.4                     | 30.7                                                      | -                                                               |                                                                          |
| 99    | 615870                        | 244858                        | 37.8 | 42.6 | 39.0 | 32.8 | 38.1 | 34.4 | 29.1 | 26.2 | 47.8 | 44.3 | 39.8 | 39.1 | -                        | -                                                         |                                                                 | Triplicate Site with 99, 100 and 101 - Annual data provided for 101 only |
| 100   | 615870                        | 244858                        | 43.6 | 38.5 | 38.7 | 30.6 | 35.6 | 33.9 | 27.0 | 29.7 | 47.0 | 44.4 | 38.8 | 44.2 | -                        | -                                                         |                                                                 | Triplicate Site with 99, 100 and 101 - Annual data provided for 101 only |
| 101   | 615870                        | 244858                        | 44.6 | 41.2 | 37.8 | 32.7 | 41.2 | 34.4 | 30.3 | 28.0 | 50.0 | 40.3 | 40.3 | 44.3 | 38.0                     | 29.6                                                      | 23.7                                                            | Triplicate Site with 99, 100 and 101 - Annual data provided for 101 only |

⊠ All erroneous data has been removed from the NO₂ diffusion tube dataset presented in Table B.1.

 $\boxtimes$  Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG16.

## Ipswich Borough Council

Local bias adjustment factor used

Where applicable, data has been distance corrected for relevant exposure in the final column.

☑ Ipswich Borough Council confirm that all 2021 diffusion tube data has been uploaded to the Diffusion Tube Data Entry System.
Notes:

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

NO<sub>2</sub> annual means exceeding 60µg/m<sup>3</sup>, indicating a potential exceedance of the NO<sub>2</sub> 1-hour mean objective are shown in **bold and underlined**. See Appendix C for details on bias adjustment and annualisation. Ipswich Borough Council

# Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

# New or Changed Sources Identified Within Ipswich During 2021

Ipswich Borough Council has not identified any new sources relating to air quality within the reporting year of 2021.

## Additional Air Quality Works Undertaken by Ipswich Borough Council During 2021

Ipswich Borough Council has not completed any additional works within the reporting year of 2021.

## **QA/QC of Diffusion Tube Monitoring**

Nitrogen dioxide diffusion tubes are supplied by SOCOTEC, Didcot. The method of preparation is 50% TEA in acetone.

Monitoring has been completed in adherence with the 2021 Diffusion Tube Monitoring Calendar. The exposed tubes are analysed in accordance with SOCOTEC's standard operating procedure which complies with the guidelines set out in DEFRA's *'Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance'*. The analysis of diffusion tube samples to determine the amount of nitrogen dioxide present on the tubes is within the scope of their UKAS schedule. SOCOTEC participates in the AIR NO<sub>2</sub> PT scheme, the results of which indicate that between January – March 2021 (more recent data unavailable at the time of writing this report) 100% of QC samples reported were analysed satisfactorily.

Using the *AEA\_DifTPAB\_v04.xls* spreadsheet published on the DEFRA LAQM Support website to check the precision of collocated tubes, the results for all collocated monitoring sites within Ipswich were shown to demonstrate "*Good*  precision" (see Figure C.1).

A control tube (travel blank) is sent with each month's tubes.

#### Figure C.1 – Precision and Accuracy of Collocated Diffusion Tubes

#### a) Bramford Road (Site ID: 8, 9 & 10)

| Cł     | necking l                | Precisio                        | n and                   | Accu                        | racy o                      | f Triplic          | ate Tub               | bes                                 | 6                 |             |                | ergy & I                  | Environm                    | nent                         |
|--------|--------------------------|---------------------------------|-------------------------|-----------------------------|-----------------------------|--------------------|-----------------------|-------------------------------------|-------------------|-------------|----------------|---------------------------|-----------------------------|------------------------------|
|        |                          |                                 | Diff                    | iusion Tu                   | bes Mea                     | surements          |                       |                                     |                   | FIUL        | Automa         | tic Method                | Data Quali                  | ty Check                     |
| Period | Start Date<br>dd/mm/yyyy | End Date<br>dd/mm/yyyy          | Tube 1<br>µgm⁻³         | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |             | Period<br>Mean | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1      | 06/01/2021               | 04/02/2021                      | 43.0                    | 45.0                        | 35.6                        | 41                 | 5.0                   | 12                                  | 12.3              |             |                |                           | Good                        |                              |
| 2      | 04/02/2021               | 04/03/2021                      | 40.1                    | 36.5                        | 39.2                        | 39                 | 1.9                   | 5                                   | 4.7               |             |                |                           | Good                        |                              |
| 3      | 04/03/2021               | 31/03/2021                      | 41.1                    | 39.6                        | 38.3                        | 40                 | 1.4                   | 4                                   | 3.5               |             |                |                           | Good                        |                              |
| 4      | 31/03/2021               | 05/05/2021                      | 40.8                    | 36.7                        | 34.3                        | 37                 | 3.3                   | 9                                   | 8.2               |             |                |                           | Good                        |                              |
| 5      | 05/05/2021               | 01/06/2021                      | 35.4                    | 34.8                        | 36.0                        | 35                 | 0.6                   | 2                                   | 1.5               |             |                |                           | Good                        |                              |
| 6      | 01/06/2021               | 01/07/2021                      | 35.9                    | 37.0                        | 32.8                        | 35                 | 2.2                   | 6                                   | 5.4               |             |                |                           | Good                        |                              |
| 7      | 01/07/2021               | 02/08/2021                      | 32.0                    | 32.8                        | 31.3                        | 32                 | 0.8                   | 2                                   | 1.9               |             |                |                           | Good                        |                              |
| 8      | 02/08/2021               | 02/09/2021                      | 27.5                    | 29.7                        | 31.9                        | 30                 | 2.2                   | 7                                   | 5.5               |             |                |                           | Good                        |                              |
| э      | 02/09/2021               | 29/09/2021                      | 42.7                    | 41.6                        | 44.7                        | 43                 | 1.6                   | 4                                   | 3.9               |             |                |                           | Good                        |                              |
| 10     | 29/09/2021               | 05/11/2021                      | 38.6                    | 36.9                        | 36.5                        | 37                 | 1.1                   | 3                                   | 2.8               |             |                |                           | Good                        |                              |
| 11     | 05/11/2021               | 01/12/2021                      | 38.5                    | 39.0                        | 46.0                        | 41                 | 4.2                   | 10                                  | 10.4              |             |                |                           | Good                        |                              |
| 12     | 01/12/2021               | 06/01/2022                      | 38.0                    | 35.8                        | 39.5                        | 38                 | 1.9                   | 5                                   | 4.6               |             |                |                           | Good                        |                              |
| 13     |                          |                                 |                         |                             |                             |                    |                       |                                     |                   |             |                |                           |                             |                              |
| lt is  | necessary to             | have results f                  | or at least             | two tube:                   | s in order                  | to calculate       | the precision         | n of the measur                     | ements            |             | Overa          | II survey>                | Good                        |                              |
| Si     | te Name/ ID:             | Bramf                           | ord R <mark>oa</mark> d | O/S No.                     | 122                         |                    | Precision             | 12 out of 12                        | periods h         | ave a C     | V smaller      | than 20%                  | (Check average              | CV & DC from                 |
| I —    |                          |                                 | 0.5%                    |                             | internel)                   |                    |                       | 1                                   |                   | C.d.e.e.e.e | in Assess      | 1                         | Accuracyica                 | loulations)                  |
|        | Accuracy                 | (Will<br>riodo with C)          | l 95% COI               | han 20%                     | interval)                   |                    |                       | (WIU                                | 1 95% CON         | ndence      | interval)      | 50%                       |                             |                              |
|        | Diag coloula             | tod uping 0                     | r larger u              | f data                      |                             |                    | Diag colou            | UATA<br>Istod using 0 J             | norioda of        | Edata       |                | 50 10                     |                             |                              |
|        | Dias Calcula             | lieu using v j<br>Diae factor A | perious o               | uala                        |                             |                    | bias calcu            | Diag factor A                       | perious of        | uala        |                | E 25%                     |                             |                              |
|        |                          | Dias lactor A                   |                         |                             |                             |                    |                       | Dias lactor A                       |                   |             |                | di ne                     |                             |                              |
|        | Diffusion                | Dids D                          |                         |                             |                             |                    | Difference            | Dids D                              |                   |             |                | 5                         | Without CV>20%              | With all data                |
|        | Diffusion                | (Dresision)                     |                         | µgm                         |                             |                    | Diffusion             | Tubes Mean:                         |                   | µgm         |                | isnj -25%                 |                             |                              |
|        | Mean CV                  | (Precision):                    |                         |                             |                             |                    | mean C                | (Precision):                        |                   |             |                | ä -50%                    |                             |                              |
|        | Auto                     | matic Mean:                     | da un ada               | µgm -                       |                             |                    | Aut                   | omauc Mean:                         |                   | µgm -       |                | -007/                     |                             |                              |
|        | Data Cap                 | ure for perio                   | as usea:                |                             | -4                          |                    | Data Ca               | pure for perio                      | ous used:         |             |                |                           |                             | · ·-·                        |
|        | Adjusted                 | lubes Mean:                     |                         |                             | µgm~°                       |                    | Adjusted              | Tubes Mean:                         |                   |             | µgm™           |                           | Jaume Tar                   | ga, for AEA                  |
| 1      |                          |                                 |                         |                             |                             |                    |                       |                                     |                   |             |                | Ve                        | ersion 04 - Feb             | ruary 2011                   |

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at:

LAQMHelpdesk@uk.bureauveritas.com

| C      | necking I                | Precisio               | n and                       | Accu                        | acy o                       | f Triplic          | ate Tub                        | es                                  | 0                 | A Al              | THE AEA           | ergy & I                  | Environm                              | nent                         |
|--------|--------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|--------------------------------|-------------------------------------|-------------------|-------------------|-------------------|---------------------------|---------------------------------------|------------------------------|
|        |                          |                        | Diff                        | usion Tu                    | bes Mea                     | surements          |                                |                                     |                   |                   | Automa            | tic Method                | Data Quali                            | ty Check                     |
| Period | Start Date<br>dd/mm/yyyy | End Date<br>dd/mm/yyyy | Tube 1<br>µgm <sup>-3</sup> | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation          | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |                   | Period<br>Mean    | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check           | Automatic<br>Monitor<br>Data |
| 1      | 06/01/2021               | 04/02/2021             | 62.5                        | 65.0                        | 61.6                        | 63                 | 1.8                            | 3                                   | 4.4               |                   |                   |                           | Good                                  |                              |
| 2      | 04/02/2021               | 02/03/2021             | 54.6                        | 48.6                        | 47.9                        | 50                 | 3.7                            | 7                                   | 9.1               |                   |                   |                           | Good                                  |                              |
| 3      | 02/03/2021               | 30/03/2021             | 50.9                        | 54.9                        | 45.1                        | 50                 | 4.9                            | 10                                  | 12.2              |                   |                   |                           | Good                                  |                              |
| 4      | 30/03/2021               | 05/05/2021             | 37.4                        | 38.3                        | 36.5                        | 37                 | 0.9                            | 2                                   | 2.2               |                   |                   |                           | Good                                  |                              |
| 5      | 05/05/2021               | 01/06/2021             | 51.9                        | 63.4                        | 55.0                        | 57                 | 6.0                            | 10                                  | 14.8              |                   |                   |                           | Good                                  |                              |
| 6      | 01/06/2021               | 01/07/2021             | 47.4                        | 46.4                        | 46.7                        | 47                 | 0.5                            | 1                                   | 1.3               |                   |                   |                           | Good                                  |                              |
| 7      | 01/07/2021               | 03/08/2021             | 45.9                        | 46.5                        | 45.9                        | 46                 | 0.3                            | 1                                   | 0.9               |                   |                   |                           | Good                                  |                              |
| 8      | 03/08/2021               | 01/09/2021             | 40.7                        | 44.2                        | 46.8                        | 44                 | 3.1                            | 7                                   | 7.6               |                   |                   |                           | Good                                  |                              |
| 9      | 01/09/2021               | 29/09/2021             | 61.2                        | 64.5                        | 58.9                        | 62                 | 2.8                            | 5                                   | 7.0               |                   |                   |                           | Good                                  |                              |
| 10     | 29/09/2021               | 03/11/2021             | 64.2                        | 63.9                        | 70.4                        | 66                 | 3.7                            | 6                                   | 9.1               |                   |                   |                           | Good                                  |                              |
| 11     | 03/11/2021               | 01/12/2021             | 70.3                        | 57.5                        | 58.2                        | 62                 | 7.2                            | 12                                  | 17.9              |                   |                   |                           | Good                                  |                              |
| 12     | 01/12/2021               | 03/01/2022             | 62.7                        | 58.7                        | 62.0                        | 61                 | 2.1                            | 3                                   | 5.3               |                   |                   |                           | Good                                  |                              |
| 13     |                          |                        |                             |                             |                             |                    |                                |                                     |                   |                   |                   |                           |                                       |                              |
|        | necessary to I           | have results fo        | or at least                 | two tubes                   | s in order                  | to calculate       | the precision                  | of the measur                       | ements            |                   | Overa             | Il survey>                | Good precision                        |                              |
| S      | te Name/ ID:             |                        | Pipers (                    | ourt                        |                             |                    | Precision                      | 12 out of 12                        | periods h         | ave a U           | V smaller         | than 20%                  | Uneck average                         | CV & DC from                 |
|        | Accuracy                 | (with                  | 1 95% co                    | nfidence                    | interval)                   |                    | Accuracy                       | (with                               | 1 95% con         | fidence           | interval)         |                           | Hoodrady de                           | incollacions)                |
|        | without per              | riods with CV          | / larger t                  | han 20%                     |                             |                    | WITH ALL I                     | ATA                                 |                   |                   |                   | 50%                       | · 1                                   |                              |
|        | Bias calcula             | ted using 0 p          | periods o                   | f data                      |                             |                    | Bias calcu                     | ated using 0 (                      | periods of        | f data            |                   | .se .or ar                |                                       |                              |
|        | E                        | Bias factor A          |                             |                             |                             |                    |                                | Bias factor A                       |                   |                   |                   | 8 20%                     |                                       |                              |
|        |                          | Bias B                 |                             |                             |                             |                    |                                | Bias B                              |                   |                   |                   | Ē. %                      | • • • • • • • • • • • • • • • • • • • |                              |
|        | Diffusion 1              | Tubes Mean:            |                             | µgm <sup>-3</sup>           |                             |                    | Diffusion                      | Tubes Mean:                         |                   | µgm <sup>-3</sup> |                   | sion sign                 | Windur CV-20%                         | WHITI IAN CRASA              |
|        | Mean CV                  | (Precision):           |                             |                             |                             |                    | Mean C                         | (Precision):                        |                   |                   |                   | Diffu                     |                                       |                              |
|        | Auto                     | matic Mean:            |                             | µgm <sup>-s</sup>           |                             |                    | Aut                            | omatic Mean:                        |                   | µgm <sup>-3</sup> |                   | -50%                      | ,                                     |                              |
|        | Data Cap                 | ture for perio         | ds used:                    |                             |                             |                    | Data Capture for periods used: |                                     |                   |                   |                   |                           |                                       |                              |
|        | Adjusted 1               | Fubes Mean:            |                             |                             | µgm <sup>-3</sup>           |                    | Adjusted                       | Tubes Mean:                         |                   |                   | µgm <sup>-3</sup> |                           | Jaume Tar                             | ga, for AEA                  |
|        |                          |                        |                             |                             |                             |                    |                                |                                     |                   |                   |                   | Ve                        | ersion 04 - Feb                       | ruary 2011                   |

#### b) Piper's Court (Site ID: 11, 12 & 19)

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at:

LAQMHelpdesk@uk.bureauveritas.com

#### c) Chevallier Street (Site ID: 45, 46 & 47 co-located with IPS3)

| CI     | necking I                | Precisio               | n and                       | Accu                        | racy o                      | of Triplic         | ate Tub                                               | bes                                 | 0                 | B AF    | TA En<br>The AEA  | ergy & I                  | Environm                    | nent                         |
|--------|--------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|-------------------------------------------------------|-------------------------------------|-------------------|---------|-------------------|---------------------------|-----------------------------|------------------------------|
|        |                          |                        | Diff                        | iusion Tu                   | bes Mea                     | surements          |                                                       |                                     |                   |         | Automa            | tic Method                | Data Quali                  | tv Check                     |
| Period | Start Date<br>dd/mm/yyyy | End Date<br>dd/mm/yyyy | Tube 1<br>µgm <sup>-3</sup> | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation                                 | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |         | Period<br>Mean    | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1      | 06/01/2021               | 04/02/2021             | 31.9                        | 31.1                        | 30.7                        | 31                 | 0.6                                                   | 2                                   | 1.5               |         |                   |                           | Good                        |                              |
| 2      | 04/02/2021               | 04/03/2021             | 31.0                        | 33.7                        | 31.6                        | 32                 | 1.4                                                   | 4                                   | 3.5               |         |                   |                           | Good                        |                              |
| 3      | 04/03/2021               | 31/03/2021             | 29.6                        | 30.7                        | 28.3                        | 30                 | 1.2                                                   | 4                                   | 3.0               |         |                   |                           | Good                        |                              |
| 4      | 31/03/2021               | 05/05/2021             | 26.2                        | 24.2                        | 25.9                        | 25                 | 1.1                                                   | 4                                   | 2.7               |         |                   |                           | Good                        |                              |
| 5      | 05/05/2021               | 01/06/2021             | 27.4                        | 25.6                        | 26.2                        | 26                 | 0.9                                                   | 3                                   | 2.3               |         |                   |                           | Good                        |                              |
| 6      | 01/06/2021               | 01/07/2021             | 29.9                        | 28.8                        | 28.3                        | 29                 | 0.8                                                   | 3                                   | 2.0               |         |                   |                           | Good                        |                              |
| 7      | 01/07/2021               | 02/08/2021             | 23.9                        | 24.6                        | 22.1                        | 24                 | 1.3                                                   | 5                                   | 3.2               |         |                   |                           | Good                        |                              |
| 8      | 02/08/2021               | 02/09/2021             | 22.0                        | 22.8                        | 16.1                        | 20                 | 3.7                                                   | 18                                  | 9.1               |         |                   |                           | Good                        |                              |
| 3      | 02/09/2021               | 29/09/2021             | 34.8                        | 35.1                        | 35.9                        | 35                 | 0.6                                                   | 2                                   | 1.4               |         |                   |                           | Good                        |                              |
| 10     | 29/09/2021               | 05/11/2021             | 31.3                        | 27.8                        | 31.4                        | 30                 | 2.1                                                   | 7                                   | 5.1               |         |                   |                           | Good                        |                              |
| 11     | 05/11/2021               | 01/12/2021             | 29.9                        | 29.8                        | 32.2                        | 31                 | 1.4                                                   | 4                                   | 3.4               |         |                   |                           | Good                        |                              |
| 12     | 01/12/2021               | 06/01/2022             | 30.1                        | 31.4                        | 30.7                        | 31                 | 0.7                                                   | 2                                   | 1.6               |         |                   |                           | Good                        |                              |
| 13     |                          |                        |                             |                             |                             |                    |                                                       |                                     |                   |         |                   |                           |                             |                              |
| lt is  | necessary to l           | have results f         | or at least                 | two tube:                   | s in order                  | to calculate       | the precisior                                         | of the measur                       | ements            |         | Overa             | II survey>                | Good precision              |                              |
| Si     | te Name/ ID:             | C                      | hevallier                   | Street                      |                             |                    | Precision                                             | 12 out of 12                        | periods h         | ave a C | V smaller         | than 20%                  | (Check average              | CV & DC from                 |
|        | Accuracy                 | (wit)                  | 05% co                      | nfidonco                    | interval                    |                    | Ассигасу                                              | (with                               | 05% con           | fidonce | interval          |                           | Accuracyica                 | ilculations)                 |
|        | without ner              | riods with C           | larger fl                   | han 20%                     | nitervalj                   |                    |                                                       |                                     | 1 33 % CON        | nuence  | intervalj         | 50%                       |                             |                              |
|        | Bias calcula             | ted using 0 i          | narger a                    | f data                      |                             |                    | Bias calcul                                           | lated using 0 (                     | neriods of        | f data  |                   | se                        |                             |                              |
|        | F                        | Rias factor A          | Jerrious o                  | - uutu                      |                             |                    | Dias calca                                            | Bias factor A                       | perious of        | uutu    |                   | 25%<br>v                  |                             |                              |
|        | -                        | Bias B                 |                             |                             |                             |                    |                                                       | Bias B                              |                   |         |                   | ₽ <u>_</u> 0%             | • • •                       | •                            |
|        | Diffusion                | Tubes Mean             |                             | uam-3                       |                             |                    | Diffusion                                             | Tubes Mean:                         |                   | uam-3   |                   | lion                      | Without CV>20%              | With all data                |
|        | Mean CV                  | (Precision)            |                             | P.9                         |                             |                    | Mean C                                                | V (Precision)                       |                   | Pam     |                   | sn -25%                   |                             |                              |
|        | Auto                     | matic Mean             |                             | uam-3                       |                             |                    | Mean CV (Precision):                                  |                                     |                   |         |                   | -50%                      |                             |                              |
|        | Data Cap                 | ture for perio         | ds used:                    | 128111                      |                             |                    | Automatic Mean: µgm<br>Data Capture for periods used: |                                     |                   | pgin    |                   |                           |                             |                              |
|        | Adjusted                 | Tubes Mean:            | all do du.                  |                             | uam <sup>-3</sup>           |                    | Adjusted Tubes Mean:                                  |                                     |                   |         | uam <sup>-3</sup> |                           | Jaume Tar                   | oa, for AEA                  |
|        | Hajustou                 | aboo moun              |                             |                             | Pari                        |                    | riajaotou                                             | Tubbe Mean                          |                   |         | P.81.1            | Ve                        | ersion 04 - Feb             | ruary 2011                   |

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at:

LAQMHelpdesk@uk.bureauveritas.com

| Cł     | ecking I                 | Precisio               | n and                       | Accu                        | acy o                       | f Triplic          | ate Tub                        | es                                  | 0                 | AE<br>Fror        | A En<br>n the AEA | ergy &                    | Environm                    | ient                         |
|--------|--------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|--------------------------------|-------------------------------------|-------------------|-------------------|-------------------|---------------------------|-----------------------------|------------------------------|
|        |                          |                        | Diff                        | iusion Tu                   | bes Mea                     | surements          |                                |                                     |                   |                   | Automa            | tic Method                | Data Quali                  | ty Check                     |
| Period | Start Date<br>dd/mm/yyyy | End Date<br>dd/mm/yyyy | Tube 1<br>µgm <sup>-3</sup> | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation          | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |                   | Period<br>Mean    | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1      | 06/01/2021               | 04/02/2021             | 64.7                        | 68.2                        |                             | 66                 | 2.5                            | 4                                   | 22.2              |                   |                   |                           | Good                        |                              |
| 2      | 04/02/2021               | 04/03/2021             | 55.6                        | 56.0                        |                             | 56                 | 0.3                            | 1                                   | 2.5               |                   |                   |                           | Good                        |                              |
| 3      | 04/03/2021               | 31/03/2021             | 59.0                        |                             |                             |                    |                                |                                     |                   |                   |                   |                           |                             |                              |
| 4      | 31/03/2021               | 05/05/2021             | 41.7                        | 36.0                        |                             | 39                 | 4.0                            | 10                                  | 36.2              |                   |                   |                           | Good                        |                              |
| 5      | 05/05/2021               | 01/06/2021             | 43.9                        | 53.2                        |                             | 49                 | 6.6                            | 14                                  | 59.1              |                   |                   |                           | Good                        |                              |
| 6      | 01/06/2021               | 01/07/2021             | 45.5                        | 49.6                        |                             | 48                 | 2.9                            | 6                                   | 26.0              |                   |                   |                           | Good                        |                              |
| 7      | 01/07/2021               | 02/08/2021             | 44.8                        | 48.1                        |                             | 46                 | 2.3                            | 5                                   | 21.0              |                   |                   |                           | Good                        |                              |
| 8      | 02/08/2021               | 02/09/2021             | 44.3                        | 26.8                        |                             | 36                 | 12.4                           | 35                                  | 111.2             |                   |                   |                           | Poor Precision              |                              |
| 3      | 02/09/2021               | 29/09/2021             | 62.9                        | 64.4                        |                             | 64                 | 1.1                            | 2                                   | 9.5               |                   |                   |                           | Good                        |                              |
| 10     | 29/09/2021               | 05/11/2021             | 64.0                        | 65.4                        |                             | 65                 | 1.0                            | 2                                   | 8.9               |                   |                   |                           | Good                        |                              |
| 11     | 05/11/2021               | 01/12/2021             | 50.7                        | 68.3                        |                             | 60                 | 12.4                           | 21                                  | 111.8             |                   |                   |                           | Poor Precision              |                              |
| 12     | 01/12/2021               | 06/01/2022             | 53.9                        | 65.7                        |                             | 60                 | 8.3                            | 14                                  | 75.0              |                   |                   |                           | Good                        |                              |
| 13     |                          |                        |                             |                             |                             |                    |                                |                                     |                   |                   |                   |                           |                             |                              |
| It is  | necessary to I           | have results h         | or at least                 | two tube:                   | s in order                  | to calculate       | the precision                  | of the measur                       | ements            |                   | Overa             | ill survey>               | Good precision              |                              |
| Sit    | e Name/ ID:              | Norwich Ro             | ad betwe                    | een No's.                   | 13 & 15                     |                    | Precision                      | 9 out of 11                         | periods ha        | ave a Cl          | / smaller t       | han 20%                   | Ucheck average              | UV & DU from                 |
|        | Accuracy                 | (with                  | 1 95% co                    | nfidence                    | interval)                   |                    | Accuracy                       | (with                               | 1 95% con         | fidence           | interval)         |                           | Hoodiady da                 | iculations)                  |
|        | without per              | riods with CV          | / larger t                  | han 20%                     |                             |                    | WITH ALL I                     | ATA                                 |                   |                   |                   | 50%                       | 6 <b>1</b>                  |                              |
|        | Bias calcula             | ted using 0 r          | periods o                   | f data                      |                             |                    | Bias calcu                     | ated using 0 r                      | periods of        | data              |                   | se                        |                             |                              |
|        | E                        | Bias factor A          |                             |                             |                             |                    |                                | Bias factor A                       |                   |                   |                   | 8 25%                     | -                           |                              |
|        |                          | Bias B                 |                             |                             |                             |                    |                                | Bias B                              |                   |                   |                   | Ē 09                      | •                           | •                            |
|        | Diffusion 1              | Tubes Mean:            |                             | µgm <sup>-3</sup>           |                             |                    | Diffusion                      | Tubes Mean:                         |                   | µgm <sup>-3</sup> |                   | sion of                   | Winout GV>20%               | with all data                |
|        | Mean CV                  | (Precision):           |                             |                             |                             |                    | Mean C                         | (Precision):                        |                   |                   |                   | n#i0                      |                             |                              |
|        | Auto                     | matic Mean:            |                             | µgm-3                       |                             |                    | Aut                            | omatic Mean:                        |                   | µgm <sup>-3</sup> |                   | -50 %                     | 6                           |                              |
|        | Data Cap                 | ture for perio         | ds used:                    |                             |                             |                    | Data Capture for periods used: |                                     |                   |                   |                   |                           |                             |                              |
|        | Adjusted 1               | lubes Mean:            |                             |                             | µgm <sup>-3</sup>           |                    | Adjusted Tubes Mean:           |                                     |                   |                   | µgm <sup>-3</sup> |                           | Jaume Tar                   | ga, for AEA                  |
|        |                          |                        |                             |                             |                             |                    |                                |                                     |                   |                   |                   | V                         | ersion 04 - Feb             | ruary 2011                   |

#### d) Norwich Road (Site ID: 64 & 65)

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at:

LAQMHelpdesk@uk.bureauveritas.com

#### e) St. Helens Street (Site ID: 80, 81 & 82)

| Cł     | ecking I                 | Precisio                                  | n and                       | Accu                        | racy o                      | of Triplic                                                     | ate Tub                                             | bes                                       | 0.                | AE<br>From | A Ene          | argy & I                  | Environm                    | nent                         |
|--------|--------------------------|-------------------------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------|------------|----------------|---------------------------|-----------------------------|------------------------------|
|        |                          |                                           | Diff                        | iusion Tu                   | bes Mea                     | surements                                                      |                                                     |                                           |                   |            | Automat        | tic Method                | Data Quali                  | ty Check                     |
| Period | Start Date<br>dd/mm/yyyy | End Date<br>dd/mm/yyyy                    | Tube 1<br>µgm <sup>-3</sup> | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-s</sup> | Triplicate<br>Mean                                             | Standard<br>Deviation                               | Coefficient<br>of Variation<br>(CV)       | 95% CI<br>of mean |            | Period<br>Mean | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1      | 06/01/2021               | 04/02/2021                                | 36.2                        | 44.5                        |                             | 40                                                             | 5.9                                                 | 15                                        | 52.7              | ] [        |                |                           | Good                        |                              |
| 2      | 04/02/2021               | 02/03/2021                                | 37.1                        | 39.8                        | 40.4                        | 39                                                             | 1.8                                                 | 4                                         | 4.4               |            |                |                           | Good                        |                              |
| 3      | 02/03/2021               | 30/03/2021                                | 36.1                        | 34.9                        | 39.8                        | 37                                                             | 2.6                                                 | 7                                         | 6.3               |            |                |                           | Good                        |                              |
| 4      | 30/03/2021               | 05/05/2021                                | 28.7                        | 31.9                        | 26.6                        | 29                                                             | 2.7                                                 | 9                                         | 6.6               |            |                |                           | Good                        |                              |
| 5      | 05/05/2021               | 01/06/2021                                | 31.6                        | 35.3                        | 42.1                        | 36                                                             | 5.3                                                 | 15                                        | 13.2              |            |                |                           | Good                        |                              |
| 6      | 01/06/2021               | 01/07/2021                                | 24.6                        | 38.5                        | 37.9                        | 34                                                             | 7.9                                                 | 23                                        | 19.5              |            |                |                           | Poor Precision              |                              |
| 7      | 01/07/2021               | 03/08/2021                                | 34.9                        | 32.1                        | 33.5                        | 34                                                             | 1.4                                                 | 4                                         | 3.5               |            |                |                           | Good                        |                              |
| 8      | 03/08/2021               | 01/09/2021                                | 29.5                        | 32.6                        | 26.0                        | 29                                                             | 3.3                                                 | 11                                        | 8.2               |            |                |                           | Good                        |                              |
| 3      | 01/09/2021               | 29/09/2021                                | 44.8                        | 48.9                        | 48.2                        | 47                                                             | 2.2                                                 | 5                                         | 5.4               |            |                |                           | Good                        |                              |
| 10     | 29/09/2021               | 03/11/2021                                | 49.8                        | 50.4                        | 47.8                        | 49                                                             | 1.4                                                 | 3                                         | 3.4               |            |                |                           | Good                        |                              |
| 11     | 03/11/2021               | 01/12/2021                                | 47.2                        | 51.8                        | 40.9                        | 47                                                             | 5.5                                                 | 12                                        | 13.6              |            |                |                           | Good                        |                              |
| 12     | 01/12/2021               | 03/01/2022                                | 47.1                        | 43.1                        | 38.7                        | 43                                                             | 4.2                                                 | 10                                        | 10.4              |            |                |                           | Good                        |                              |
| 13     |                          |                                           |                             |                             |                             |                                                                |                                                     |                                           |                   | JL         |                |                           |                             |                              |
| It is  | necessary to I           | have results fo                           | or at least                 | two tube:                   | s in order                  | to calculate                                                   | the precision                                       | of the measur                             | ements            |            | Overa          | II survey>                | Good precision              |                              |
| Sit    | e Name/ ID:              | St Heler                                  | is Street                   | - County                    | Hall                        |                                                                | Precision                                           | 11 out of 12                              | periods h         | ave a CV   | / smaller t    | than 20%                  | (Check average              | CV & DC from                 |
|        | Ассигасу                 | (with                                     | 95% co                      | nfidence                    | interval)                   |                                                                | Accuracy                                            | (with                                     | 1 95% con         | fidence    | interval       |                           | Accuracy ca                 | iculations)                  |
|        | without per              | riods with CV                             | / larger t                  | han 20%                     | incontrait,                 |                                                                | WITH ALL                                            | DATA                                      |                   | naonoo     | incorrai,      | 50%                       | 1                           |                              |
|        | Bias calcula<br>E        | ited using 0 p<br>Bias factor A<br>Bias B | periods o                   | f data                      |                             |                                                                | Bias calcul                                         | ated using 0 p<br>Bias factor A<br>Bias B | periods of        | f data     |                | B Bias 55%                | Without Classon             | Mills of claim               |
|        | Diffusion 1<br>Mean CV   | Tubes Mean:<br>(Precision):               |                             | µgm <sup>-3</sup>           |                             | Diffusion Tubes Mean: µgm <sup>3</sup><br>Mean CV (Precision): |                                                     |                                           |                   |            | oisn -25%      | ,                         |                             |                              |
|        | Auto<br>Data Cap         | matic Mean:<br>ture for perio             | ds used:                    | µgm-3                       |                             |                                                                | Automatic Mean:<br>Data Capture for periods used:   |                                           |                   |            |                | -50%                      |                             |                              |
|        | Adjusted 1               | Tubes Mean:                               |                             |                             | µgm <sup>-3</sup>           |                                                                | Adjusted Tubes Mean: µgm <sup>-3</sup> Jaume Targa, |                                           |                   |            | ga, for AEA    |                           |                             |                              |
|        |                          |                                           |                             |                             |                             | -                                                              |                                                     |                                           |                   |            |                | Ve                        | ersion 04 - Feb             | ruary 2011                   |

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at:

LAQMHelpdesk@uk.bureauveritas.com

| Cł     | necking l                | Precisio               | n and                       | Accu                        | racy o                      | f Triplic          | ate Tub               | bes                                 | 6                 | B AE              | EA En             | ergy & I                  | Environm                    | nent                         |
|--------|--------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|-----------------------|-------------------------------------|-------------------|-------------------|-------------------|---------------------------|-----------------------------|------------------------------|
|        |                          |                        | Diff                        | iusion Tu                   | hes Mea                     | surements          |                       |                                     |                   | / 1101            | Automa            | tic Method                | Data Quali                  | tv Check                     |
| Period | Start Date<br>dd/mm/yyyy | End Date<br>dd/mm/yyyy | Tube 1<br>µgm <sup>-3</sup> | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |                   | Period<br>Mean    | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1      | 06/01/2021               | 04/02/2021             | 37.8                        | 43.6                        | 44.6                        | 42                 | 3.7                   | 9                                   | 9.1               |                   |                   |                           | Good                        |                              |
| 2      | 04/02/2021               | 04/03/2021             | 42.6                        | 38.5                        | 41.2                        | 41                 | 2.1                   | 5                                   | 5.2               |                   |                   |                           | Good                        |                              |
| 3      | 04/03/2021               | 31/03/2021             | 39.0                        | 38.7                        | 37.8                        | 39                 | 0.6                   | 2                                   | 1.6               |                   |                   |                           | Good                        |                              |
| 4      | 31/03/2021               | 05/05/2021             | 32.8                        | 30.6                        | 32.7                        | 32                 | 1.2                   | 4                                   | 3.1               |                   |                   |                           | Good                        |                              |
| 5      | 05/05/2021               | 01/06/2021             | 38.1                        | 35.6                        | 41.2                        | 38                 | 2.8                   | 7                                   | 7.0               |                   |                   |                           | Good                        |                              |
| 6      | 01/06/2021               | 01/07/2021             | 34.4                        | 33.9                        | 34.4                        | 34                 | 0.3                   | 1                                   | 0.7               |                   |                   |                           | Good                        |                              |
| 7      | 01/07/2021               | 02/08/2021             | 29.1                        | 27.0                        | 30.3                        | 29                 | 1.7                   | 6                                   | 4.1               |                   |                   |                           | Good                        |                              |
| 8      | 02/08/2021               | 02/09/2021             | 26.2                        | 29.7                        | 28.0                        | 28                 | 1.8                   | 6                                   | 4.3               |                   |                   |                           | Good                        |                              |
| 9      | 02/09/2021               | 29/09/2021             | 47.8                        | 47.0                        | 50.0                        | 48                 | 1.6                   | 3                                   | 3.9               |                   |                   |                           | Good                        |                              |
| 10     | 29/09/2021               | 05/11/2021             | 44.3                        | 44.4                        | 40.3                        | 43                 | 2.3                   | 5                                   | 5.8               |                   |                   |                           | Good                        |                              |
| 11     | 05/11/2021               | 01/12/2021             | 39.8                        | 38.8                        | 40.3                        | 40                 | 0.8                   | 2                                   | 1.9               |                   |                   |                           | Good                        |                              |
| 12     | 01/12/2021               | 06/01/2022             | 39.1                        | 44.2                        | 44.3                        | 43                 | 3.0                   | 7                                   | 7.4               |                   |                   |                           | Good                        |                              |
| 13     |                          |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   |                           |                             |                              |
| lt is  | necessary to l           | have results fo        | or at least                 | two tube:                   | s in order                  | to calculate       | the precision         | n of the measur                     | ements            |                   | Overa             | II survey>                | Good precision              |                              |
| Sit    | e Name/ ID:              | St                     | Matthew                     | s Street                    |                             |                    | Precision             | 12 out of 12                        | periods h         | ave a C           | V smaller         | than 20%                  | (Check average              | CV & DC from                 |
|        |                          |                        |                             |                             |                             |                    | -                     |                                     |                   |                   |                   |                           | Accuracyica                 | lculations)                  |
|        | Accuracy                 | (with                  | 1 95% COI                   | nfidence                    | interval)                   |                    | Accuracy              | (Witi                               | 1 95% con         | fidence           | interval)         |                           |                             |                              |
|        | without per              | riods with CV          | / larger ti                 | han 20%                     |                             |                    | WITHALL               | DATA                                |                   |                   |                   | 50%                       |                             |                              |
|        | Bias calcula             | ited using 0 p         | periods o                   | f data                      |                             |                    | Bias calcu            | lated using 0                       | periods of        | fdata             |                   | 25%                       |                             |                              |
|        | E                        | Bias factor A          |                             |                             |                             |                    |                       | Bias factor A                       |                   |                   |                   | 鱼                         |                             |                              |
|        |                          | Bias B                 |                             |                             |                             |                    |                       | Bias B                              |                   |                   |                   | Ē m <sup>0%</sup>         | Without CV>20%              | With al data                 |
|        | Diffusion                | Tubes Mean:            |                             | µgm⁻°                       |                             |                    | Diffusion             | Tubes Mean:                         |                   | µgm∼°             |                   | isn -25%                  |                             |                              |
|        | Mean CV                  | (Precision):           |                             |                             |                             |                    | Mean C                | V (Precision):                      |                   |                   |                   | 皆                         |                             |                              |
|        | Auto                     | matic Mean:            |                             | µgm <sup>-3</sup>           |                             |                    | Aut                   | omatic Mean:                        |                   | µgm <sup>-3</sup> |                   | -50%                      |                             |                              |
|        | Data Cap                 | ture for perio         | ds used:                    |                             |                             |                    | Data Ca               | pture for perio                     | ods used:         |                   |                   |                           |                             |                              |
|        | Adjusted                 | Tubes Me <u>an:</u>    |                             |                             | µgm <sup>-3</sup>           |                    | Adjusted              | Tubes Mean:                         |                   |                   | µgm <sup>-3</sup> |                           | Jaume Tar                   | ga, for AEA                  |
|        |                          |                        |                             |                             |                             |                    |                       |                                     |                   |                   |                   | Ve                        | ersion 04 - Feb             | ruary 2011                   |

#### f) St. Matthews Street (Site ID: B5, B6 & B7 co-located with IPS04)

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at: LAQMHelpdesk@uk.bureauveritas.com

#### **Diffusion Tube Annualisation**

All diffusion tube monitoring locations within Ipswich recorded data capture of 75% therefore it was not required to annualise any monitoring data. In addition, any sites with a data capture below 25% do not require annualisation.

#### **Diffusion Tube Bias Adjustment Factors**

The diffusion tube data presented within the 2022 ASR have been corrected for bias using an adjustment factor. Bias represents the overall tendency of the diffusion tubes to under or over-read relative to the reference chemiluminescence analyser. LAQM.TG16 provides guidance with regard to the application of a bias adjustment factor to correct diffusion tube monitoring. Triplicate co-location studies can be used to determine a local bias factor based on the comparison of diffusion tube results with data taken from NO<sub>x</sub>/NO<sub>2</sub> continuous analysers. Alternatively, the national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method.

Following the resumption of automatic air quality monitoring at the Chevallier Street site (IPS3) in December 2016, for the fifth consecutive year it has been possible to compare mean collocated diffusion tube values with data captured by the cheminescence

analyser using the AEA\_DifPAB\_v04.xls spreadsheet to obtain a local bias adjustment factor of 0.78. This is also the second year it has been possible to compare mean collocated diffusion tube values with data captured by the cheminescence analyser at the St Matthews Street site (IPS04). The analyser was commissioned in June 2019, just outside the boundary of AQMA 5. Both co-location sites were used to derive a local bias adjustment factor of 0.78%. Table C.2 below details how the local bias adjustment factor was calculated.

Consulting the National Diffusion Tube Bias Adjustment Factor Spreadsheet Version 03/22 published on the DEFRA LAQM Support website, for the SOCOTEC, Didcot laboratory; preparation method 50% TEA in acetone; for the year 2021, a bias adjustment figure of 0.78 was obtained based on 23 studies. For 2021, both the local and national bias correction factors are 0.78.

Ipswich Borough Council have applied a local bias adjustment factor of 0.78 to the 2021 monitoring data. A summary of bias adjustment factors used by Ipswich Borough Council over the past five years is presented in Table C.1.

The decision to apply the local bias adjustment factor gave consideration to the guidance in Box 7.11 of LAQM.TG16. The reason for the decision was due to:

- This is the fifth year running where the Council has been able to obtain a high data capture rate (98%) of continuous analyser data to benchmark this year's data against.
- The co-located sites have good precision for the diffusion tubes and high quality chemiluminescence results.

To assist with providing transparency to the reader, an example of the bias correction factor being applied to a diffusion tube is shown below.

#### Example of applying the bias correction to diffusion tube data:

Diffusion tube 35 (Cobden Place) – annual mean 27.2µg/m<sup>3</sup> (average from 12 months of monthly diffusion tube readings).

 $27.2\mu g/m^3 \times 0.78 = 21.2\mu g/m^3$ 

| Monitoring Year | Local or National | If National, Version of<br>National Spreadsheet | Adjustment Factor |
|-----------------|-------------------|-------------------------------------------------|-------------------|
| 2021            | Local             | -                                               | 0.78              |
| 2020            | Local             | -                                               | 0.75              |
| 2019            | Local             | -                                               | 0.75              |
| 2018            | Local             | -                                               | 0.83              |
| 2017            | National          | 03/18                                           | 0.77              |

#### Table C.1 – Bias Adjustment Factor

#### NO<sub>2</sub> Fall-off with Distance from the Road

Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO<sub>2</sub> concentration at the nearest location relevant for exposure has been estimated using the Diffusion Tube Data Processing Tool/NO<sub>2</sub> fall-off with distance calculator available on the LAQM Support website. Where appropriate, non-automatic annual mean NO<sub>2</sub> concentrations corrected for distance are presented in Table B.1.

Distance correction should be considered at any monitoring site where the annual mean concentration is greater than  $36\mu g/m^3$  and the monitoring site is not located at a point of relevant exposure. Once corrected for bias, the only monitoring sites that required distance correction due to being greater than  $36\mu g/m^3$  and not located at a point of relevant exposure were sites, 30, 39 and 64&65 (duplicate). Site 31 was listed as requiring distance correction, but there is no relevant receptor in the vicinity of the site. The corrections were undertaken using the  $NO_2$  Fall-Off with Distance Calculator Version 4.2 available on the Defra LAQM Support website. The outputs are presented in Table C.3. For thoroughness, distance correction was also applied to all non-automatic monitoring sites not located at a point of relevant exposure.

## **QA/QC of Automatic Monitoring**

The automatic monitors located on Chevallier Street (IPS3) and St Matthews Street (IPS04) are subject to fortnightly routine calibration by an Ipswich Borough Council Environmental Health Officer or Technical Officer.

The analysers are also serviced and the monitoring site audited biannually by Matts Monitors and Ricardo Energy & Environment respectively. Copies of the Certificate of Calibration issued following the most recent site audits (December 2021) are displayed below (Figures C.2 and C.3).

All automatic monitoring data collected at the Chevallier Street and St Matthews Street sites are managed by Ricardo Energy & Environment using the same quality control procedures utilised by Defra's national air quality network stations. These procedures represent best practice and fully meet the requirements set out in LAQM.TG(16). Ricardo Energy & Environment currently provide UKAS accredited quality control audits and data management services to all Defra national network (AURN) air quality monitoring stations.

All collected data is screened and scaled (based on site calibrations) and the final data sets presented within this report (Figures C.4 and C.5) have benefitted from a full process of data ratification, including thorough additional data quality checks that include site audits and a ratification process that corrects data for instrument sensitivity drift between routine calibrations.

Live and historic monitoring data can be found on the Air Quality England Website

## Figure C.2 – Certificate of Calibration for IPS3

|                                                                                                                                                                                                                                                                                                                                                                                                                    | CERTIFICA<br>Scardo Energy and Enviro                                                                                                                                                                                                                                                                                                      | ATE OF CALIBRATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ON<br>well, Didoot,                                                                                                                                                            | ARDO |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Page 1 of 3                                                                                                                                                                    |      |
| oved Signatories:                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            | S, Eaton<br>D Hector<br>N Rand<br>B Davies<br>D Lane<br>S Copsey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B Stacey<br>S Stratton<br>S Telfer<br>S Gray<br>T Green                                                                                                                        |      |
| ed:                                                                                                                                                                                                                                                                                                                                                                                                                | N.R.                                                                                                                                                                                                                                                                                                                                       | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |      |
| of issue:                                                                                                                                                                                                                                                                                                                                                                                                          | 23 Dec 21                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |      |
| ificate Number:                                                                                                                                                                                                                                                                                                                                                                                                    | 05678                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                            | Grafton House<br>15-17 Russell Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                |      |
| rription:<br>rdo Energy & Environme<br>The reported expanded uncertain<br>confidence of approximately 95%<br>This certificate is issued in accords<br>provides traceability of measure                                                                                                                                                                                                                             | ent ID: 8<br>ties are based on a stand<br>The uncertainty evaluation<br>ance with the laboratory<br>sent to the Staystem of up                                                                                                                                                                                                             | arafton House<br>IS-17 Russell Road<br>pswich<br>P1 2DE<br>Calibration factors for the air<br>pswich Chevallier Street<br>ED79001143/December 2021<br>and uncertainty multiplied by a coverage fact<br>on has been carried out in accordance with the<br>accreditation requirements of the United Kin<br>its and/or to units of measurement realiser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | monitoring station at<br>tor k-2 providing a level of<br>IXAS requirements.<br>gdom Accreditation Service. It<br>at the National Physic al                                     |      |
| The reported expanded uncertain<br>confidence of approximately 95%.<br>This certificate is issued in accords<br>provides traceability of measurem<br>Laboratory or other recognised na<br>prior written approval of the issue                                                                                                                                                                                      | ties are based on a stand<br>The uncertainty evaluation<br>ance with the laboratory<br>sent to the SI system of u<br>tional metrology institut<br>ng laboratory                                                                                                                                                                            | arafton House<br>15-17 Russell Road<br>pswich<br>P1 2DE<br>Calibration factors for the air<br>pswich Chevallier Street<br>ED79001143/December 2021<br>and uncertainty multiplied by a coverage fac<br>on has been carried out in accordance with t<br>accreditation requirements of the United Kin<br>rits and/or to units of measurement realised<br>es. This certificate may not be reproduced of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | monitoring station at<br>tor k=2 providing a level of<br>KKS requirements.<br>gdom Accreditation Service. It<br>at the National Physic al<br>ber than in full, except with the |      |
| rription:<br>rdo Energy & Environme<br>The reported expanded uncertain<br>confidence of approximately 95%<br>This certificate is issued in accords<br>provides traceability of measurem<br>Laboratory or other recognised na<br>prior written approval of the issue<br>Ricardo Energy & Environment<br>Head Office<br>Geneini Building,<br>Farmi Averue,<br>Hawel,<br>Oxon<br>OX11 DOR<br>Tet: +44 (0)1235 753 000 | ent ID: E<br>ties are based on a stand<br>The uncertainty evaluation<br>ance with the laboratory<br>ent to the Staystem of u<br>tional metrology institut<br>ng laboratory<br>Registered office<br>Shoreham Technic<br>Shoreham Technic<br>Shoreham Sec<br>Weat SeG<br>Registered in Eng<br>DE220264<br>VAT Registration<br>GB 212 8305 24 | arafton House<br>IS-17 Russell Road<br>pswich<br>P1 2DE<br>Calibration factors for the air<br>pswich Chevallier Street<br>ED79001143/December 2021<br>and uncertainty multiplied by a coverage fac<br>on has been carried out in accordance with the<br>accreditation requirements of the United live<br>is and/or to quirements of the United live<br>accreditation requirements of the | monitoring station at<br>tor k-2 providing a level of<br>K4S requirements.<br>gdom Accreditation Service. It<br>at the National Physic al<br>her than in full, except with the |      |



### CERTIFICATE OF CALIBRATION



Page 2 of 3

Certificate Number:

Date of issue:

05678

23 Dec 21

Ricardo Energy & Environment ID:

ED79001143/December 2021

Ipswich Chevallier Street Date of audit: 13 Dec 2021

|           | Species | Analyser<br>Serial no | Zero<br>Response <sup>1</sup> | uncertainty | Calibration<br>Factor <sup>2</sup> | uncertainty | Converter eff.<br>(%) <sup>3</sup> |
|-----------|---------|-----------------------|-------------------------------|-------------|------------------------------------|-------------|------------------------------------|
| thermo42i | NOx     | CM08050004            | 3.9                           | 2,5         | 0.9297                             | 3.8449      | 98.3                               |
|           | NO      | CM08050004            | 3.8                           | 2.5         | 0.9295                             | 4.0055      | n/a                                |

ee.ricardo.com

Ipswich Chevalier St 13\_12\_2021\_Cert 5678 2 of 3



#### CERTIFICATE OF CALIBRATION



Page 3 of 3

Date of issue: 23 Dec 21 Certificate Number:

Ricardo Energy & Environment ID:

05678

ED79001143/December 2021

The gaseous ambient analysers listed above have been tested for zero response, calibration factor, linearity and converter efficiency (NOx analysers) by documented methods. The factors have been calculated using certified gas standards. The particulate analysers listed above have been tested for sample flow rates and k0(where appropriate) by documented methods. Note that the test results are valid on the day of test only, as analyser drift over time cannot be quantified. All results for gaseous species are given in nmol/mol mole fractions or µmol mole fractions.

<sup>1</sup> The zero response is the zero reading on the data logging system of the analyser when audit zero gas was introduced to the analysers under test.

<sup>2</sup> The calibration factor is the multiplying factor required to scale the reading on the data logging system of the analyser into reported concentration units (nmol/mol for NO, NOx, SO2, O3 and µmol/mol for CO). It should be used in conjunction with the zero response. A corrected concentration is calculated using the following equation:

Concentration = F(Output - Zero Response)

Where F = Calibration Factor provided on this certificate Output = Reading on the data logging system of the analyser Zero Response = Zero Response provided on this certificate

<sup>8</sup> Converter eff. is the measured efficiency of the NO<sub>2</sub> to NO converter within the oxides of nitrogen analyser under test.

The calibration results shaded are those that fall within our scope of accreditation, all other results on this certificate are not UKAS accredited, but have been included for completeness.

ee.ricardo.com

Ipswich Chevalier St 13\_12\_2021\_Cert 5678 3 of 3

#### Figure C.3 – Certificate of Calibration for IPS04

|                                                                                                                                                                                                                                       | CERTIFICATE OF CALIBRATION<br>ardo Energy and Environment, Gemini Building, Fermi Avenue Harwell, Didcot,<br>RICARD                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0401                                                                                                                                                                                                                                  | Page 1 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| proved Signatories:                                                                                                                                                                                                                   | S. Eaton       B Stacey         D Hector       S Stratton         N Rand       S Telfer         B Davies       S Gray         D Lane       T Green         S Copsey                                                                                                                                                                                                                                                                                                                                                      |
| jned:                                                                                                                                                                                                                                 | N. Runch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| te of issue:                                                                                                                                                                                                                          | 23 Dec 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rtificate Number:                                                                                                                                                                                                                     | 05679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| stomer Name and Address                                                                                                                                                                                                               | Ipswich Borough Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                       | Gratton House<br>15-17 Russell Road<br>Ipswich<br>IP1 2DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| scription:                                                                                                                                                                                                                            | Calibration factors for the air monitoring station at<br>Ipswi <mark>c</mark> h St Matthews Street                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ardo Energy & Environmer                                                                                                                                                                                                              | nt ID: ED79001143/December 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The reported expanded uncertainti<br>confidence of approximately 95% T<br>This certificate is issued in accordan<br>provides traceability of measureme<br>Laboratory or other recognised nat<br>prior written approval of the issuing | es are based on a standard uncertainty multiplied by a coverage factor k-2 providing a level of<br>he uncertainty evaluation has been carried out in accordance with UKAS requirements.<br>newith the laboratory accreditation requirements of the United Kingdom Accreditation Service. It<br>int to the SI system of units and/or to units of measurement realised at the National Physical<br>ional metrology institutes. This certificate may not be reproduced other than in full, except with the<br>g laboratory. |
| Ricardo Energy & Environment                                                                                                                                                                                                          | Registered office<br>Shoreham Technical Centre<br>ShorehSusan<br>West Susan                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heed Office<br>Gemini Building,<br>Formi Avenue,<br>Harwell,                                                                                                                                                                          | BN43 5FG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Head Office<br>Germin Building,<br>Fiermi Avenue,<br>Harwell,<br>Oxon<br>OX11 DQR                                                                                                                                                     | BN43 5FG<br>Registered in England No.<br>06230204                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Head Office<br>Garnin Bulding,<br>Farmi Avenue,<br>Harwel,<br>Oxon 0<br>OX11 0/2R<br>Tel: +44 (0)1235 753 000                                                                                                                         | BN43 5FG<br>Registered in England No.<br>06203054<br>VAT Registration No.<br>GB 212 8585 24                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Head Office<br>Garrini Pulding,<br>Farmi Avenue,<br>Harwel,<br>Oxon<br>OX11 0/0R<br>Tel: +44 (0)1235 753 000                                                                                                                          | BN43 5FG<br>Registered in England No.<br>0622024<br>VAT Registration No.<br>GB 212 8585 24<br>e.ricardo.com                                                                                                                                                                                                                                                                                                                                                                                                              |

Ipswich St Matthews St 13\_12\_2021\_Cert 5679 1 of 3



#### CERTIFICATE OF CALIBRATION



Page 2 of 3

Date of issue: 23 Dec 21 Certificate Number: 05679

05679

Ricardo Energy & Environment ID:

ED79001143/December 2021

#### Ipswich St Matthews Street Date of audit: 13 Dec 2021

|         | Species   | Analyser<br>Serial no | Zero<br>Response <sup>1</sup> | Zero<br>uncertainty<br>nmol/mol | Calibration<br>Factor <sup>2</sup> | Factor<br>uncertainty<br>% | Converter eff.<br>(%) <sup>3</sup> |
|---------|-----------|-----------------------|-------------------------------|---------------------------------|------------------------------------|----------------------------|------------------------------------|
| APIT200 | NOx<br>NO | 2696<br>2696          | -0.7<br>-0.5                  | 2.6<br>2.5                      | 1.0820<br>1.0618                   | 3.5<br>3.6105              | 98.7<br>n/a                        |
|         |           |                       |                               |                                 |                                    |                            |                                    |

ee.ricardo.com

Ipswich St Matthews St 13\_12\_2021\_Cert 5679 2 of 3



Date of issue:

#### CERTIFICATE OF CALIBRATION

23 Dec 21

05679



Page 3 of 3

Certificate Number:

Ricardo Energy & Environment ID:

ED79001143/December 2021

The gaseous ambient analysers listed above have been tested for zero response, calibration factor, linearity and converter efficiency (NOx analysers) by documented methods. The factors have been calculated using certified gas standards. The particulate analysers listed above have been tested for sample flow rates and k0(where appropriate) by documented methods. Note that the test results are valid on the day of test only, as analyser drift over time cannot be quantified. All results for gaseous species are given in nmol/mol mole fractions or µmol mole fractions.

<sup>1</sup> The zero response is the zero reading on the data logging system of the analyser when audit zero gas was introduced to the analysers under test.

<sup>2</sup> The calibration factor is the multiplying factor required to scale the reading on the data logging system of the analyser into reported concentration units (nmol/mol for NO, NOx, SO2, O3 and µmol/mol for CO). It should be used in conjunction with the zero response. A corrected concentration is calculated using the following equation:

Concentration = F(Output - Zero Response) Where F = Calibration Factor provided on this certificate Output = Reading on the data logging system of the analyser Zero Response = Zero Response provided on this certificate

<sup>3</sup> Converter eff. is the measured efficiency of the NO<sub>2</sub> to NO converter within the oxides of nitrogen analyser under test.

The calibration results shaded are those that fall within our scope of accreditation, all other results on this certificate are not UKAS accredited, but have been included for completeness.

ee.ricardo.com

Ipswich St Matthews St 13\_12\_2021\_Cert 5679 3 of 3

#### Figure C.4 – 2021 Air Pollution Report – Ipswich Chevallier Street (Site ID: IPS3)

#### **Air Pollution Report**

1st January to 31st December 2021



#### Ipswich Chevallier Street (Site ID: IPS3)

These data have been fully ratified

Only relevant statistics for LAQM are presented in the table. Cells with - indicate no data available or calculated.

| Pollutant                        | NO<br>µg/m² | NO <sub>2</sub><br>µg/m² | NO <sub>x</sub> as NO <sub>2</sub><br>µg/m² |
|----------------------------------|-------------|--------------------------|---------------------------------------------|
| Numbe r Days Low                 | -           | 365                      | -                                           |
| Number Days Moderate             | -           | 0                        | -                                           |
| Numbe r Days High                | -           | 0                        | -                                           |
| Numbe r Days Very High           | -           | 0                        | -                                           |
| Max Daily Me an                  | 114         | 70                       | 226                                         |
| Annual Max                       | 495         | 113                      | 863                                         |
| Annual Me an                     | 15          | 23                       | 46                                          |
| 99.8th Percentile of hourly mean | -           | 92                       | -                                           |
| 98th Percentile of hourly mean   | 89          | 62                       | 191                                         |
| 95th Percentile of hourly mean   | 46          | 52                       | 119                                         |
| 50th Percentile of hourly me an  | 9           | 20                       | 34                                          |
| % Annual data capture            | 98.24       | 98.24                    | 98.24                                       |

All gase ous polutant mass units are at 20°C and 1013mb. Particulate matter concentrations are reported at ambient temperature and pressure. NO<sub>X</sub> mass units are NO<sub>X</sub> as NO<sub>2</sub> µg m-3

| Pollutant         | Air Quality<br>Standards<br>regulations<br>2010            | Exceedan ces | Days |
|-------------------|------------------------------------------------------------|--------------|------|
| Nitroge n dioxide | Hourly Mean ><br>200<br>nicrogrammes<br>per metre<br>cubed | 0            | 0    |
| Nitrogen dioxide  | Annual Mean<br>> 40<br>microgrammes<br>per metre<br>cubed  | 0            | •    |

#### Annual Graph



#### Figure C.5 – 2021 Air Pollution Report – Ipswich St Matthews Street (Site ID: IPS04)

#### **Air Pollution Report**

1st January to 31st December 2021



#### Ipswich St Matthews Street (Site ID: IPS04)

The se data have been fully ratified

Only relevant statistics for LAQM are presented in the table. Cells with - indicate no data available or calculated.

| Pollutant                        | NO<br>µg/m² | NO <sub>2</sub><br>µg/m² | NO <sub>x</sub> as NO <sub>2</sub><br>µg/m² |
|----------------------------------|-------------|--------------------------|---------------------------------------------|
| Number Days Low                  | -           | 365                      | -                                           |
| Number Days Moderate             | -           | 0                        | -                                           |
| Number Days High                 | -           | 0                        | -                                           |
| Number Days Very High            | -           | 0                        | -                                           |
| Max Daily Me an                  | 129         | 78                       | 256                                         |
| Annual Max                       | 581         | 129                      | 1,003                                       |
| Annual Me an                     | 21          | 28                       | 61                                          |
| 99.8th Percentile of hourly mean | -           | 98                       | -                                           |
| 98th Percentile of hourly mean   | 95          | 72                       | 209                                         |
| 95th Percentile of hourly mean   | 64          | 60                       | 157                                         |
| 50th Percentile of hourly mean   | 16          | 25                       | 50                                          |
| % Annual data capture            | 99.33       | 99.33                    | 99.33                                       |

All gase ous polutant mass units are at 20°C and 1013mb. Particulate matter concentrations are reported at ambient temperature and pressure.  $NO_X$  mass units are  $NO_X$  as  $NO_2 \ \mu g \ ms^3$ 

| Pollutant         | Air Quality<br>Standards<br>regulations<br>2010            | Excee dan ces | Days |
|-------------------|------------------------------------------------------------|---------------|------|
| Nitroge n dioxide | Hourly Mean ><br>200<br>microgrammes<br>per metre<br>cubed | 0             | 0    |
| Nitrogen dioxide  | An nual Mean<br>> 40<br>microgrammes<br>per metre<br>cubed | 0             | •    |



#### **Automatic Monitoring Annualisation**

All automatic monitoring locations within Ipswich recorded data capture of greater than 75% therefore it was not required to annualise any monitoring data. In addition, any sites with a data capture below 25% do not require annualisation.

#### NO<sub>2</sub> Fall-off with Distance from the Road

Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO<sub>2</sub> concentration at the nearest location relevant for exposure has been estimated using the NO<sub>2</sub> fall-off with distance calculator available on the LAQM Support website. Where appropriate, non-automatic annual mean NO<sub>2</sub> concentrations corrected for distance are presented in Table B.1.

|                                          | Local Bias<br>Adjustment Input 1<br>(Chevallier Street) | Local Bias<br>Adjustment Input 2<br>(St Matthews Street) | Local Bias<br>Adjustment Input 3 | Local Bias<br>Adjustment Input 4 | Local Bias<br>Adjustment Input 5 |
|------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Periods used to calculate bias           | 12                                                      | 12                                                       |                                  |                                  |                                  |
| Bias Factor A                            | 0.81 (0.77 – 0.84)                                      | 0.75 (0.72 – 0.78)                                       |                                  |                                  |                                  |
| Bias Factor B                            | 24% (19% - 30%)                                         | 33% (27% - 39%)                                          |                                  |                                  |                                  |
| Diffusion Tube Mean (µg/m <sup>3</sup> ) | 28.7                                                    | 38.0                                                     |                                  |                                  |                                  |
| Mean CV (Precision)                      | 5.0%                                                    | 4.8%                                                     |                                  |                                  |                                  |
| Automatic Mean (µg/m <sup>3</sup> )      | 23.1                                                    | 28.5                                                     |                                  |                                  |                                  |
| Data Capture                             | 98%                                                     | 99%                                                      |                                  |                                  |                                  |
| Adjusted Tube Mean (µg/m <sup>3</sup> )  | 23 (22 – 24)                                            | 29 (27 – 30)                                             |                                  |                                  |                                  |

#### Table C.2– Local Bias Adjustment Calculation

#### Notes:

A combined local bias adjustment factor of 0.78 has been used to bias adjust the 2021 diffusion tube results. The calculation of the local bias adjustment factor was performed in accordance as per Chapter 7 of LAQM.TG16.

Calculation of combined bias correction factor:

24% (Chevallier Street) + 33% (St Matthews Street) / 2 = 33.5 0.285% + 1 = 1.285 1/1.285 = **0.78** 

| Checking Precision and Accuracy of Triplicate Tubes                                                                                                                                                       |                                                                                                                                                    |                        |                             |                             |                             |                            |                                               |                                                   |                                        |                              |                   |                           |                             |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------|-------------------|---------------------------|-----------------------------|--------------------------------|
| Diffusion Tubes Measurements                                                                                                                                                                              |                                                                                                                                                    |                        |                             |                             |                             |                            |                                               |                                                   |                                        | Automa                       | tic Method        | Data Qua                  | ity Check                   |                                |
| Period                                                                                                                                                                                                    | Start Date<br>dd/mm/yyyy                                                                                                                           | End Date<br>dd/mm/yyyy | Tube 1<br>µgm <sup>-3</sup> | Tube 2<br>µgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean         | Standard<br>Deviation                         | Coefficient<br>of Variation<br>(CV)               | 95% CI<br>of mean                      |                              | Period<br>Mean    | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data   |
| 1                                                                                                                                                                                                         | 06/01/2021                                                                                                                                         | 04/02/2021             | 31.9                        | 31.1                        | 30.7                        | 31                         | 0.6                                           | 2                                                 | 1.5                                    |                              | 25.51             | 100                       | Good                        | Good                           |
| 2                                                                                                                                                                                                         | 04/02/2021                                                                                                                                         | 04/03/2021             | 31.0                        | 33.7                        | 31.6                        | 32                         | 14                                            | 4                                                 | 3.5                                    |                              | 26.6              | 99.41                     | Good                        | Good                           |
| 3                                                                                                                                                                                                         | 04/03/2021                                                                                                                                         | 31/03/2021             | 29.6                        | 30.7                        | 28.3                        | 30                         | 1.2                                           | 4                                                 | 3.0                                    |                              | 26.4              | 100                       | Good                        | Good                           |
| 4                                                                                                                                                                                                         | 31/03/2021                                                                                                                                         | 05/05/2021             | 26.2                        | 24.2                        | 25.9                        | 25                         | 11                                            | 4                                                 | 2.7                                    |                              | 23.87             | 99.76                     | Good                        | Good                           |
| 5                                                                                                                                                                                                         | 05/05/2021                                                                                                                                         | 01/06/2021             | 27.4                        | 25.6                        | 26.2                        | 26                         | 0.9                                           | 3                                                 | 2.3                                    |                              | 20                | 98.31                     | Good                        | Good                           |
| 6                                                                                                                                                                                                         | 01/06/2021                                                                                                                                         | 01/07/2021             | 29.9                        | 28.8                        | 28.3                        | 29                         | 0.8                                           | 3                                                 | 2.0                                    |                              | 22                | 90.71                     | Good                        | Good                           |
| 1                                                                                                                                                                                                         | 01/07/2021                                                                                                                                         | 02/08/2021             | 23.9                        | 24.6                        | 22.1                        | 24                         | 1.3                                           | 5                                                 | 3.2                                    |                              | 18                | 92.98                     | Good                        | Good                           |
| 8                                                                                                                                                                                                         | 02/08/2021                                                                                                                                         | 02/09/2021             | 22.0                        | 22.8                        | 16.1                        | 20                         | 3.7                                           | 18                                                | 9.1                                    |                              | 17                | 99.19                     | Good                        | Good                           |
| 9                                                                                                                                                                                                         | 02/09/2021                                                                                                                                         | 29/09/2021             | 34.8                        | 35.1                        | 35.9                        | 35                         | 0.6                                           | 2                                                 | 1.4                                    |                              | 28                | 99.85                     | Good                        | Good                           |
| 10                                                                                                                                                                                                        | 29/09/2021                                                                                                                                         | 05/11/2021             | 31.3                        | 27.8                        | 31.4                        | 30                         | 2.1                                           | 7                                                 | 5.1                                    |                              | 22                | 99.66                     | Good                        | Good                           |
| 11                                                                                                                                                                                                        | 05/11/2021                                                                                                                                         | 01/12/2021             | 29.9                        | 29.8                        | 32.2                        | 31                         | 14                                            | 4                                                 | 3.4                                    |                              | 24.38             | 100                       | Good                        | Good                           |
| 12                                                                                                                                                                                                        | 01/12/2021                                                                                                                                         | 06/01/2022             | 30.1                        | 31.4                        | 30.7                        | 31                         | 0.7                                           | 2                                                 | 1.6                                    |                              | 23.74             | 99.31                     | Good                        | Good                           |
| 13                                                                                                                                                                                                        |                                                                                                                                                    |                        |                             |                             |                             |                            |                                               |                                                   |                                        |                              |                   |                           |                             |                                |
| t is I                                                                                                                                                                                                    | necessary to l                                                                                                                                     | have results f         | or at least                 | two tube                    | s in order                  | to calculate               | the precision                                 | n of the measur                                   | ements                                 |                              | Overa             | ill survey>               | Good                        | Good<br>Overall DC             |
| Sit                                                                                                                                                                                                       | e Name/ ID:                                                                                                                                        | C                      | hevallier                   | Street                      |                             |                            | Precision                                     | 12 out of 12                                      | periods h                              | ave a C                      | V smaller         | than 20%                  | (Check averag               | e CV & DC from<br>alculations) |
|                                                                                                                                                                                                           | Accuracy                                                                                                                                           | (with                  | n 95% cor                   | nfidence                    | interval)                   |                            | Accuracy                                      | (with                                             | h 95% con                              | fidence                      | interval)         |                           |                             |                                |
|                                                                                                                                                                                                           | without periods with CV larger than 20%<br>Bias calculated using 12 periods of data<br>Bias factor A 0.81 (0.77 - 0.84)<br>Bias B 224% (19% - 20%) |                        |                             |                             |                             |                            | Bias calcu                                    | DATA<br>lated using 12<br>Bias factor A<br>Bias B | 2 periods<br>0.81<br>24%               | of data<br>(0.77 -<br>(18% - | 0.84)<br>29%)     | 50%<br>25%<br>25%         | +                           | •                              |
| Bias B         2016         (105 - 2076)           Diffusion Tubes Mean:         29         µgm <sup>3</sup> Mean CV (Precision):         5           Automatic Mean:         23         µgm <sup>3</sup> |                                                                                                                                                    |                        |                             |                             |                             | Diffusion<br>Mean C<br>Aut | Tubes Mean:<br>V (Precision):<br>omatic Mean: | 29<br>5<br>23                                     | µgm <sup>-3</sup><br>µgm <sup>-3</sup> |                              | -25%<br>-50%      | What CV-20%               | with all data               |                                |
|                                                                                                                                                                                                           | Adjusted                                                                                                                                           | Tubes Mean:            | 23 (2)                      | 90%<br>2 - 24)              | µgm-3                       |                            | Adjusted                                      | Tubes Mean:                                       | 23 (22                                 | - 24)                        | µgm <sup>-3</sup> | Ve                        | Jaume Ta<br>ersion 04 - Fe  | rga, for AE<br>bruary 201      |

| Diffusion Tubes Measurements Automatic Method Data Quality Check                                                       |                                                                        |                                                                                                            |                                                                   |                                                                                                                          |                             |                    |                                       | ty Check                                                                                    |                                           |                                                             |                |                              |                             |                             |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------|------------------------------|-----------------------------|-----------------------------|
| Pellon                                                                                                                 | Start Date<br>dd/mm/yyyy                                               | End Date<br>dd/mm/yyyy                                                                                     | Tube 1<br>µgm⁻³                                                   | Tube 2<br>µgm <sup>-3</sup>                                                                                              | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation                 | Coefficient<br>of Variation<br>(CV)                                                         | 95% CI<br>of mean                         |                                                             | Period<br>Mean | Data<br>Capture<br>(% DC)    | Tubes<br>Precision<br>Check | Automati<br>Monitor<br>Data |
| 1                                                                                                                      | 06/01/2021                                                             | 04/02/2021                                                                                                 | 37.8                                                              | 43.6                                                                                                                     | 44.6                        | 42                 | 3.7                                   | 9                                                                                           | 9.1                                       |                                                             | 34.08          | 100                          | Good                        | Good                        |
| 2                                                                                                                      | 04/02/2021                                                             | 04/03/2021                                                                                                 | 42.6                                                              | 38.5                                                                                                                     | 41.2                        | 41                 | 2.1                                   | 5                                                                                           | 5.2                                       |                                                             | 32.08          | 95.84                        | Good                        | Good                        |
| 3                                                                                                                      | 04/03/2021                                                             | 31/03/2021                                                                                                 | 39.0                                                              | 38.7                                                                                                                     | 37.8                        | 39                 | 0.6                                   | 2                                                                                           | 1.6                                       |                                                             | 29.68          | 99.85                        | Good                        | Good                        |
| L                                                                                                                      | 31/03/2021                                                             | 05/05/2021                                                                                                 | 32.8                                                              | 30.6                                                                                                                     | 32.7                        | 32                 | 1.2                                   | 4                                                                                           | 3.1                                       |                                                             | 26.79          | 99.76                        | Good                        | Good                        |
| 5                                                                                                                      | 05/05/2021                                                             | 01/06/2021                                                                                                 | 38.1                                                              | 35.6                                                                                                                     | 41.2                        | 38                 | 2.8                                   | 7                                                                                           | 7.0                                       |                                                             | 27             | 99.54                        | Good                        | Good                        |
| 5                                                                                                                      | 01/06/2021                                                             | 01/07/2021                                                                                                 | 34.4                                                              | 33.9                                                                                                                     | 34.4                        | 34                 | 0.3                                   | 1                                                                                           | 0.7                                       |                                                             | 24             | 99.31                        | Good                        | Good                        |
|                                                                                                                        | 01/07/2021                                                             | 02/08/2021                                                                                                 | 29.1                                                              | 27.0                                                                                                                     | 30.3                        | 29                 | 1.7                                   | 6                                                                                           | 4.1                                       |                                                             | 22             | 99.09                        | Good                        | Good                        |
| 3                                                                                                                      | 02/08/2021                                                             | 02/09/2021                                                                                                 | 26.2                                                              | 29.7                                                                                                                     | 28.0                        | 28                 | 1.8                                   | 6                                                                                           | 4.3                                       |                                                             | 21             | 99.6                         | Good                        | Good                        |
| э                                                                                                                      | 02/09/2021                                                             | 29/09/2021                                                                                                 | 47.8                                                              | 47.0                                                                                                                     | 50.0                        | 48                 | 1.6                                   | 3                                                                                           | 3.9                                       |                                                             | 33             | 99.69                        | Good                        | Good                        |
| D                                                                                                                      | 29/09/2021                                                             | 05/11/2021                                                                                                 | 44.3                                                              | 44.4                                                                                                                     | 40.3                        | 43                 | 2.3                                   | 5                                                                                           | 5.8                                       |                                                             | 31             | 99.66                        | Good                        | Good                        |
| 1                                                                                                                      | 05/11/2021                                                             | 01/12/2021                                                                                                 | 39.8                                                              | 38.8                                                                                                                     | 40.3                        | 40                 | 0.8                                   | 2                                                                                           | 1.9                                       |                                                             | 32.21          | 99.84                        | Good                        | Good                        |
| 2                                                                                                                      | 01/12/2021                                                             | 06/01/2022                                                                                                 | 39.1                                                              | 44.2                                                                                                                     | 44.3                        | 43                 | 3.0                                   | 7                                                                                           | 7.4                                       |                                                             | 30.26          | 99.54                        | Good                        | Good                        |
| 3                                                                                                                      |                                                                        |                                                                                                            |                                                                   |                                                                                                                          |                             |                    |                                       |                                                                                             |                                           |                                                             |                |                              |                             |                             |
| is                                                                                                                     | necessary to                                                           | have results f                                                                                             | or at least                                                       | two tube:                                                                                                                | s in order                  | to calculate       | the precision                         | ) of the measur                                                                             | ements                                    |                                                             | Overa          | Il survey>                   | Good precision              | Good<br>Overall D           |
| Sit                                                                                                                    | e Name/ ID:                                                            | St                                                                                                         | Matthew                                                           | s Street                                                                                                                 |                             |                    | Precision                             | 12 out of 12                                                                                | periods h                                 | ave a C                                                     | V smaller      | than 20%                     | (Check average              | CV & DC fro                 |
| Site warner ib. St matchews Street Precision in 2 bar on 12 periods have a CV smaller warner by Accuracy calculations) |                                                                        |                                                                                                            |                                                                   |                                                                                                                          |                             |                    |                                       |                                                                                             | 0.000                                     | fidonos                                                     | intornal       |                              | Accuracy ca                 | loulations)                 |
| 1                                                                                                                      | Accuracy                                                               | (Will                                                                                                      | larger ti                                                         | han 20%                                                                                                                  | iiiteivai)                  |                    |                                       | (WIU                                                                                        | 195% COII                                 | nuence                                                      | interval)      |                              |                             |                             |
|                                                                                                                        | without periods with CV larger than 20%                                |                                                                                                            |                                                                   |                                                                                                                          |                             |                    | Piae calcul                           | DATA<br>Istoducing 12                                                                       | noriode c                                 | fdata                                                       |                |                              | -                           | -                           |
|                                                                                                                        | without pe<br>Bias calcula                                             | tod using 12                                                                                               | noriode                                                           | Bias calculated using 12 periods of data                                                                                 |                             |                    |                                       |                                                                                             |                                           | n uata                                                      |                |                              | 5 K. T                      | <b></b>                     |
|                                                                                                                        | without pe<br>Bias calcula                                             | ited using 12<br>Bias factor A                                                                             | periods                                                           | of data                                                                                                                  | 78)                         |                    | Dido odiod                            | Rias factor A                                                                               | 0.75                                      | (0.72                                                       | 0 78)          | <b>m</b> 2                   | 2.4                         |                             |
|                                                                                                                        | without pe<br>Bias calcula<br>I                                        | ited using 12<br>Bias factor A<br>Bias B                                                                   | periods<br>0.75                                                   | of data<br>5 (0.72 - (<br>27% -                                                                                          | ).78)<br>39%)               |                    |                                       | Bias factor A<br>Bias B                                                                     | 0.75                                      | (0.72 -<br>(27% -                                           | 0.78)<br>39%)  | ube B                        | 094                         |                             |
|                                                                                                                        | Without pe<br>Bias calcula                                             | ited using 12<br>Bias factor A<br>Bias B                                                                   | periods<br>0.75<br>33%                                            | of data<br>5 (0.72 - (<br>27% -                                                                                          | ).78)<br>39%)               |                    | Diffusion                             | Bias factor A<br>Bias B                                                                     | 0.75                                      | (0.72 -<br>(27% -                                           | 0.78)<br>39%)  | on Tube B                    | 0% Without CV>20%           | Wth all data                |
|                                                                                                                        | without pe<br>Bias calcula<br>I<br>Diffusion 1<br>Mean-Ch              | ated using 12<br>Bias factor A<br>Bias B<br>Fubes Mean:<br>( (Precision)                                   | periods<br>0.75<br>33%<br>38<br>5                                 | of data<br>5 (0.72 - (<br><u>(27% -</u><br>µgm <sup>-3</sup>                                                             | ).78)<br>39%)               |                    | Diffusion                             | Bias factor A<br>Bias B<br>Tubes Mean:                                                      | 0.75<br>33%<br>38                         | (0.72 -<br>(27% -<br>µgm <sup>-3</sup>                      | 0.78)<br>39%)  | fusion Tube B                | 0% Without CV-20%           | With all data               |
|                                                                                                                        | without pe<br>Bias calcula<br>Diffusion<br>Mean CV                     | ited using 12<br>Bias factor A<br>Bias B<br>Fubes Mean:<br>( (Precision):<br>matic Mean:                   | periods<br>0.75<br>33%<br>38<br>5<br>20                           | of data<br>5 (0.72 - (<br>27% -<br>µgm <sup>-3</sup>                                                                     | ).78)<br>39%)               |                    | Diffusion<br>Mean C                   | Bias factor A<br>Bias B<br>Tubes Mean:<br>V (Precision):                                    | 0.75<br>33%<br>38<br>5                    | (0.72 -<br>(27% -<br>μgm <sup>-3</sup>                      | 0.78)<br>39%)  | o<br>Diffusion Tube B<br>5 B | 0% Without CV-20%           | With all data               |
|                                                                                                                        | without pe<br>Bias calcula<br>Diffusion<br>Mean CV<br>Auto<br>Data Can | ited using 12<br>Bias factor A<br>Bias B<br>Fubes Mean:<br>( (Precision):<br>matic Mean:                   | 2 periods<br>0.75<br>33%<br>38<br>5<br>29                         | of data<br>6 (0.72 - (<br>27% -<br>µgm <sup>-3</sup><br>µgm <sup>-3</sup>                                                | ).78)<br>39%)               |                    | Diffusion<br>Mean C<br>Aut            | Bias factor A<br>Bias B<br>Tubes Mean:<br>V (Precision):<br>omatic Mean:                    | 0.75<br>33%<br>38<br>5<br>29              | (0.72 -<br>(27% -<br>µgm <sup>-3</sup><br>µgm <sup>-3</sup> | 0.78)<br>39%)  | Diffusion Tube B             | 0% Without CV-20%           | Wth all data                |
|                                                                                                                        | without pe<br>Bias calcula<br>Diffusion<br>Mean CV<br>Auto<br>Data Cap | ited using 12<br>Bias factor A<br>Bias B<br>Fubes Mean:<br>( (Precision):<br>matic Mean:<br>ture for perio | 2 periods<br>0.75<br>33%<br>38<br>5<br>29<br>ods used:<br>20. (2) | of data<br>5 (0.72 - (<br><u>(27% -</u><br><u>µgm</u> <sup>-3</sup><br><u>µgm</u> <sup>-3</sup><br><u>99%</u><br>7 - 20) | ).78)<br>39%)               |                    | Diffusion<br>Mean C<br>Aut<br>Data Ca | Bias factor A<br>Bias B<br>Tubes Mean:<br>V (Precision):<br>omatic Mean:<br>pture for perio | 0.75<br>33%<br>38<br>5<br>29<br>ods used: | (0.72 -<br>(27% -<br>μgm <sup>-3</sup><br>99%               | 0.78)<br>39%)  | Diffusion Tube B<br>5. 5.    | 0% Without CV-20%           | With all data               |

LAQM Annual Status Report 2022

| Site<br>ID | Distance (m):<br>Monitoring<br>Site to Kerb | Distance (m):<br>Receptor to<br>Kerb | Monitored<br>Concentration<br>(Annualised and<br>Bias Adjusted | Background<br>Concentration | Concentration<br>Predicted at<br>Receptor | Comments                                                 |
|------------|---------------------------------------------|--------------------------------------|----------------------------------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------------------------|
| 30         | 2.7                                         | 4.1                                  | 37.5                                                           | 16.2                        | 35.2                                      |                                                          |
| 39         | 0.8                                         | 2.0                                  | 36.5                                                           | 16.2                        | 32.7                                      |                                                          |
| 64, 65     | 1.3                                         | 1.7                                  | 41.9                                                           | 14.05944                    | 40.5                                      | Predicted concentration at Receptor above AQS objective. |

## **Appendix D: Map(s) of Monitoring Locations and AQMAs**





#### Figure D.2 – Ipswich Air Quality Management Area 1





#### Figure D.3 – Ipswich Air Quality Management Area 2

#### Figure D.4 – Ipswich Air Quality Management Area 3





#### Figure D.5 – Ipswich Air Quality Management Area 5

# Appendix E: Summary of Air Quality Objectives in England

|           | _     |         |               |          | -  |                      |
|-----------|-------|---------|---------------|----------|----|----------------------|
| Table E.1 | – Air | Quality | ' <b>Ob</b> i | iectives | in | England <sup>9</sup> |
|           |       |         |               |          |    |                      |

| Pollutant                          | Air Quality Objective: Concentration                                | Air Quality<br>Objective:<br>Measured as |
|------------------------------------|---------------------------------------------------------------------|------------------------------------------|
| Nitrogen Dioxide (NO2)             | 200µg/m <sup>3</sup> not to be exceeded more than 18 times a year   | 1-hour mean                              |
| Nitrogen Dioxide (NO2)             | 40µg/m³                                                             | Annual mean                              |
| Particulate Matter (PM10)          | 50µg/m <sup>3</sup> , not to be exceeded more than 35 times a year  | 24-hour mean                             |
| Particulate Matter (PM10)          | 40µg/m³                                                             | Annual mean                              |
| Sulphur Dioxide (SO2)              | 350µg/m <sup>3</sup> , not to be exceeded more than 24 times a year | 1-hour mean                              |
| Sulphur Dioxide (SO2)              | 125µg/m <sup>3</sup> , not to be exceeded more than 3 times a year  | 24-hour mean                             |
| Sulphur Dioxide (SO <sub>2</sub> ) | 266µg/m <sup>3</sup> , not to be exceeded more than 35 times a year | 15-minute mean                           |

 $<sup>^9</sup>$  The units are in microgrammes of pollutant per cubic metre of air (µg/m<sup>3</sup>).

## **Glossary of Terms**

| Abbreviation      | Description                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AQAP              | Air Quality Action Plan - A detailed description of measures, outcomes,<br>achievement dates and implementation methods, showing how the local<br>authority intends to achieve air quality limit values'    |
| AQMA              | Air Quality Management Area – An area where air pollutant concentrations<br>exceed / are likely to exceed the relevant air quality objectives. AQMAs are<br>declared for specific pollutants and objectives |
| ASR               | Annual Status Report                                                                                                                                                                                        |
| Defra             | Department for Environment, Food and Rural Affairs                                                                                                                                                          |
| DMRB              | Design Manual for Roads and Bridges – Air quality screening tool produced by National Highways                                                                                                              |
| EU                | European Union                                                                                                                                                                                              |
| FDMS              | Filter Dynamics Measurement System                                                                                                                                                                          |
| LAQM              | Local Air Quality Management                                                                                                                                                                                |
| NO <sub>2</sub>   | Nitrogen Dioxide                                                                                                                                                                                            |
| NOx               | Nitrogen Oxides                                                                                                                                                                                             |
| PM <sub>10</sub>  | Airborne particulate matter with an aerodynamic diameter of $10\mu m$ or less                                                                                                                               |
| PM <sub>2.5</sub> | Airborne particulate matter with an aerodynamic diameter of 2.5µm or less                                                                                                                                   |
| QA/QC             | Quality Assurance and Quality Control                                                                                                                                                                       |
| SO <sub>2</sub>   | Sulphur Dioxide                                                                                                                                                                                             |
|                   |                                                                                                                                                                                                             |

## References

- Local Air Quality Management Technical Guidance LAQM.TG16. April 2021.
   Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- Local Air Quality Management Policy Guidance LAQM.PG16. May 2016. Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.